{"title":"Optimizing Radiation Dose in High-Resolution Chest CT: The Impact of Patient-Specific Factors and Size-Specific Dose Estimates.","authors":"Mohamed Abuzaid","doi":"10.3390/diagnostics15060740","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> High-resolution chest computed tomography (HRCT) is a critical diagnostic tool, but radiation dose optimization remains a significant concern. Traditional dose metrics such as the volume CT dose index (CTDIvol) and dose-length product (DLP) do not adequately account for patient size variations. This study aimed to assess the radiation dose in HRCT using size-specific dose estimates (SSDEs) and evaluate the influence of patient-specific factors on key dosimetric parameters. <b>Methods</b>: This retrospective cohort study analyzed HRCT scans from 1970 adult patients conducted between September 2022 and February 2024. Radiation dose data, including the CTDIvol, DLP, SSDE, and effective dose, were extracted from the DoseWatch™ software. Patient demographics, scan protocols, and exposure parameters were collected. Descriptive statistics, correlation analyses, and significance testing were conducted using IBM SPSS (Version 26). <b>Results</b>: A significant positive correlation was found between the radiation dose parameters (CTDIvol, DLP, SSDE) and patient body size metrics, particularly BMI (rpb = 0.445, <i>p</i> < 0.01). The SSDE values ranged from 2.7 to 12.4 mGy, providing a more patient-specific dose assessment than traditional indices. Gender differences were observed, with male patients receiving higher radiation doses (<i>p</i> < 0.01). The scanning range exhibited a significant negative correlation with the CTDIvol and SSDE, suggesting dose variations with anatomical coverage. <b>Conclusions</b>: SSDEs provide a more accurate, patient-centered dose assessment in HRCT, allowing for optimized radiation safety strategies. These findings emphasize the need for size-adapted scan protocols to minimize exposure while maintaining diagnostic image quality. The routine integration of SSDE into clinical practice is recommended to enhance individualized dose management in HRCT.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060740","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: High-resolution chest computed tomography (HRCT) is a critical diagnostic tool, but radiation dose optimization remains a significant concern. Traditional dose metrics such as the volume CT dose index (CTDIvol) and dose-length product (DLP) do not adequately account for patient size variations. This study aimed to assess the radiation dose in HRCT using size-specific dose estimates (SSDEs) and evaluate the influence of patient-specific factors on key dosimetric parameters. Methods: This retrospective cohort study analyzed HRCT scans from 1970 adult patients conducted between September 2022 and February 2024. Radiation dose data, including the CTDIvol, DLP, SSDE, and effective dose, were extracted from the DoseWatch™ software. Patient demographics, scan protocols, and exposure parameters were collected. Descriptive statistics, correlation analyses, and significance testing were conducted using IBM SPSS (Version 26). Results: A significant positive correlation was found between the radiation dose parameters (CTDIvol, DLP, SSDE) and patient body size metrics, particularly BMI (rpb = 0.445, p < 0.01). The SSDE values ranged from 2.7 to 12.4 mGy, providing a more patient-specific dose assessment than traditional indices. Gender differences were observed, with male patients receiving higher radiation doses (p < 0.01). The scanning range exhibited a significant negative correlation with the CTDIvol and SSDE, suggesting dose variations with anatomical coverage. Conclusions: SSDEs provide a more accurate, patient-centered dose assessment in HRCT, allowing for optimized radiation safety strategies. These findings emphasize the need for size-adapted scan protocols to minimize exposure while maintaining diagnostic image quality. The routine integration of SSDE into clinical practice is recommended to enhance individualized dose management in HRCT.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.