{"title":"Tissue Resident and Infiltrating Immune Cells: Their Influence on the Demise of Beta Cells in Type 1 Diabetes.","authors":"Sophie L Walker, Pia Leete, Joanne Boldison","doi":"10.3390/biom15030441","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an organ-specific autoimmune disease that results in the selective loss of pancreatic beta cells and an eventual deficit in insulin production to maintain glucose homeostasis. It is now increasingly accepted that this dynamic disease process is multifactorial; involves a variety of immune cells which contribute to an inflamed pancreatic microenvironment; and that the condition is heterogenous, resulting in variable rates of subsequent beta cell damage. In this review, we will explore the current understanding of the cellular interactions between both resident and infiltrating immune cells within the pancreatic environment, highlighting key mechanisms which may promote the beta cell destruction and islet damage associated with T1D.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease that results in the selective loss of pancreatic beta cells and an eventual deficit in insulin production to maintain glucose homeostasis. It is now increasingly accepted that this dynamic disease process is multifactorial; involves a variety of immune cells which contribute to an inflamed pancreatic microenvironment; and that the condition is heterogenous, resulting in variable rates of subsequent beta cell damage. In this review, we will explore the current understanding of the cellular interactions between both resident and infiltrating immune cells within the pancreatic environment, highlighting key mechanisms which may promote the beta cell destruction and islet damage associated with T1D.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.