The Role of Purinergic Mechanisms in the Excitability of Trigeminal Afferents of Rats with Prenatal Hyperhomocysteinemia.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-15 DOI:10.3390/biom15030419
Elizaveta Ermakova, Svetlana Svitko, Alsu Kabirova, Egor Nevsky, Olga Yakovleva, Karina Gilizhdinova, Kseniia Shaidullova, Anton Hermann, Guzel Sitdikova
{"title":"The Role of Purinergic Mechanisms in the Excitability of Trigeminal Afferents of Rats with Prenatal Hyperhomocysteinemia.","authors":"Elizaveta Ermakova, Svetlana Svitko, Alsu Kabirova, Egor Nevsky, Olga Yakovleva, Karina Gilizhdinova, Kseniia Shaidullova, Anton Hermann, Guzel Sitdikova","doi":"10.3390/biom15030419","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated levels of homocysteine in the blood plasma (hyperhomocysteinemia, HHCY) positively correlate with migraine symptoms in patients. Experimental studies show a higher sensitivity of rats with prenatal HHCY (pHHCY) to migraine symptoms like allodynia, photophobia, anxiety, and a higher excitability of meningeal trigeminal afferents. In the present study, the roles of purinergic mechanisms in the homocysteine-induced hyperexcitability of the trigeminal ganglion (TG) system using electrophysiological recordings from the trigeminal nerve, Ca<sup>2+</sup> imaging of cells isolated from TG, and mast cell staining in meninges were investigated. Experiments were performed using rats with pHHCY born from females fed with a high-methionine-containing diet before and during pregnancy. Firstly, we found that lower concentrations of 4-aminopyridine, a K<sup>+</sup>-channel blocker, were able to induce an increase in the nociceptive activity of trigeminal afferents, supporting the hypothesis of the higher excitability of the trigeminal nerve of rats with pHHCY. Trigeminal afferents of rats with pHHCY were more sensitive to the exogenous application of the nonspecific agonist of purinergic ATP receptors. In neurons and satellite glial cells of TG of rats with pHHCY ATP, ADP (an agonist of metabotropic P2Y receptors) and BzATP (an agonist of ionotropic P2X with especially high potency for the P2X7 receptor) induced larger Ca<sup>2+</sup> transients. The incubation of TG neurons in homocysteine for 24 h increased the ratio of neurons responding simultaneously to ATP and capsaicin. Moreover, rats with pHHCY exhibit a higher rate of degranulation of mast cells and increased response to the agonist of the P2X7 receptor BzATP application. In addition, higher levels of calcitonin gene-related peptide (CGRP) were found in rats with pHHCY. Our results suggest that chronic elevated levels of homocysteine induce the upregulation of ionotropic or metabotropic ATP receptors in neurons, satellite glial cells, and mast cells, which further provide inflammatory conditions and the sensitization of peripheral afferents underlying pain.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030419","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated levels of homocysteine in the blood plasma (hyperhomocysteinemia, HHCY) positively correlate with migraine symptoms in patients. Experimental studies show a higher sensitivity of rats with prenatal HHCY (pHHCY) to migraine symptoms like allodynia, photophobia, anxiety, and a higher excitability of meningeal trigeminal afferents. In the present study, the roles of purinergic mechanisms in the homocysteine-induced hyperexcitability of the trigeminal ganglion (TG) system using electrophysiological recordings from the trigeminal nerve, Ca2+ imaging of cells isolated from TG, and mast cell staining in meninges were investigated. Experiments were performed using rats with pHHCY born from females fed with a high-methionine-containing diet before and during pregnancy. Firstly, we found that lower concentrations of 4-aminopyridine, a K+-channel blocker, were able to induce an increase in the nociceptive activity of trigeminal afferents, supporting the hypothesis of the higher excitability of the trigeminal nerve of rats with pHHCY. Trigeminal afferents of rats with pHHCY were more sensitive to the exogenous application of the nonspecific agonist of purinergic ATP receptors. In neurons and satellite glial cells of TG of rats with pHHCY ATP, ADP (an agonist of metabotropic P2Y receptors) and BzATP (an agonist of ionotropic P2X with especially high potency for the P2X7 receptor) induced larger Ca2+ transients. The incubation of TG neurons in homocysteine for 24 h increased the ratio of neurons responding simultaneously to ATP and capsaicin. Moreover, rats with pHHCY exhibit a higher rate of degranulation of mast cells and increased response to the agonist of the P2X7 receptor BzATP application. In addition, higher levels of calcitonin gene-related peptide (CGRP) were found in rats with pHHCY. Our results suggest that chronic elevated levels of homocysteine induce the upregulation of ionotropic or metabotropic ATP receptors in neurons, satellite glial cells, and mast cells, which further provide inflammatory conditions and the sensitization of peripheral afferents underlying pain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信