{"title":"Scrutinizing Stator Rotation in the Bacterial Flagellum: Reconciling Experiments and Switching Models.","authors":"Ayush Joshi, Pushkar P Lele","doi":"10.3390/biom15030355","DOIUrl":null,"url":null,"abstract":"<p><p>The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor. A derivative model suggests that significant changes in rotor diameter occur during switching, enabling each MotA<sub>5</sub>MotB<sub>2</sub> stator unit to shift between internal and external gear configurations, causing clockwise (CW) and counterclockwise (CCW) motor rotation, respectively. However, recent structural work favors a mechanism where the stator units dynamically swing back and forth between the two gear configurations without significant changes in rotor diameter. Given the intricate link between the switching model and the gear mechanism for flagellar rotation, a critical evaluation of the underlying assumptions is crucial for refining switching models. This review scrutinizes key assumptions within prevailing models of flagellar rotation and switching, identifies knowledge gaps, and proposes avenues for future biophysical tests.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030355","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor. A derivative model suggests that significant changes in rotor diameter occur during switching, enabling each MotA5MotB2 stator unit to shift between internal and external gear configurations, causing clockwise (CW) and counterclockwise (CCW) motor rotation, respectively. However, recent structural work favors a mechanism where the stator units dynamically swing back and forth between the two gear configurations without significant changes in rotor diameter. Given the intricate link between the switching model and the gear mechanism for flagellar rotation, a critical evaluation of the underlying assumptions is crucial for refining switching models. This review scrutinizes key assumptions within prevailing models of flagellar rotation and switching, identifies knowledge gaps, and proposes avenues for future biophysical tests.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.