{"title":"Inositol and PIP2/PIP3 Ratio: At the Crossroad of the Biodynamic Interface Between Cells and Their Microenvironment.","authors":"Guglielmo Lentini, Alessandro Querqui, Alessandro Giuliani, Roberto Verna, Mariano Bizzarri","doi":"10.3390/biom15030451","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides-namely PIP2 and PIP3-can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030451","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides-namely PIP2 and PIP3-can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.