Indoleacetylglutamine Pathway Is a Potential Biomarker for Cardiovascular Diseases.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-05 DOI:10.3390/biom15030377
Khaled Naja, Najeha Anwardeen, Mashael Al-Shafai, Mohamed A Elrayess
{"title":"Indoleacetylglutamine Pathway Is a Potential Biomarker for Cardiovascular Diseases.","authors":"Khaled Naja, Najeha Anwardeen, Mashael Al-Shafai, Mohamed A Elrayess","doi":"10.3390/biom15030377","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Metabolomics allows for the identification of important biomarkers for CVDs, essential for early detection and risk assessment. This cross-sectional study aimed to identify novel metabolic biomarkers associated with CVDs using non-targeted metabolomics. We compared the metabolic profiles of 112 patients with confirmed CVDs diagnosis and 112 gender- and age-matched healthy controls from the Qatar Biobank database. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the two groups. We report here a significant association between the indoleacetylglutamine pathway and cardiovascular diseases, expanding the repertoire of gut microbiota metabolites linked to CVDs. Our findings suggest that alterations in gut microbiota metabolism, potentially resulting in increased production of indoleacetate, indoleacetylglutamine, and related compounds at the expense of the cardioprotective indolepropionate, may contribute to this association. Our findings may pave the way for novel approaches in CVD risk assessment and potential therapeutic interventions targeting the gut-heart axis.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030377","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Metabolomics allows for the identification of important biomarkers for CVDs, essential for early detection and risk assessment. This cross-sectional study aimed to identify novel metabolic biomarkers associated with CVDs using non-targeted metabolomics. We compared the metabolic profiles of 112 patients with confirmed CVDs diagnosis and 112 gender- and age-matched healthy controls from the Qatar Biobank database. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the two groups. We report here a significant association between the indoleacetylglutamine pathway and cardiovascular diseases, expanding the repertoire of gut microbiota metabolites linked to CVDs. Our findings suggest that alterations in gut microbiota metabolism, potentially resulting in increased production of indoleacetate, indoleacetylglutamine, and related compounds at the expense of the cardioprotective indolepropionate, may contribute to this association. Our findings may pave the way for novel approaches in CVD risk assessment and potential therapeutic interventions targeting the gut-heart axis.

吲哚乙酰谷氨酰胺通路是心血管疾病的潜在生物标志物。
心血管疾病(cvd)仍然是全球发病率和死亡率的主要原因。代谢组学允许识别cvd的重要生物标志物,这对于早期发现和风险评估至关重要。本横断面研究旨在利用非靶向代谢组学鉴定与cvd相关的新型代谢生物标志物。我们比较了来自卡塔尔生物银行数据库的112名确诊心血管疾病患者和112名性别和年龄匹配的健康对照者的代谢谱。采用正交偏最小二乘判别分析和线性模型分析两组间代谢物水平的差异。我们在此报告了吲哚乙酰谷氨酰胺途径与心血管疾病之间的显著关联,扩大了与心血管疾病相关的肠道微生物代谢产物的范围。我们的研究结果表明,肠道微生物群代谢的改变可能导致吲哚乙酸酯、吲哚乙酰谷氨酰胺和相关化合物的产生增加,而牺牲了保护心脏的吲哚丙酸酯,这可能有助于这种关联。我们的发现可能为CVD风险评估的新方法和针对肠-心轴的潜在治疗干预铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信