Immunohistochemical Detection of PIEZO Ion Channels in the Human Carotid Sinus and Carotid Body.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-07 DOI:10.3390/biom15030386
Elda Alba, Yolanda García-Mesa, Ramón Cobo, Patricia Cuendias, José Martín-Cruces, Iván Suazo, Graciela Martínez-Barbero, José A Vega, Olivia García-Suárez, Teresa Cobo
{"title":"Immunohistochemical Detection of PIEZO Ion Channels in the Human Carotid Sinus and Carotid Body.","authors":"Elda Alba, Yolanda García-Mesa, Ramón Cobo, Patricia Cuendias, José Martín-Cruces, Iván Suazo, Graciela Martínez-Barbero, José A Vega, Olivia García-Suárez, Teresa Cobo","doi":"10.3390/biom15030386","DOIUrl":null,"url":null,"abstract":"<p><p>The carotid sinus and the carotid body are major peripheral chemo- and baro(mechano)receptors that sense changes in arterial wall pressure and in oxygen, carbon dioxide, and pH in arterial blood. Recently, it was demonstrated that the PIEZO1 and PIEZO2 mechanoreceptor/mechanotransducers are responsible for the baroreflex in the murine aortic arch (aortic sinus). Furthermore, some experimental evidence suggests that the carotid body could participate in mechanosensing. In this study, we used immunohistochemistry and immunofluorescence in conjunction with laser confocal microscopy to study the distribution of PIEZO1 and PIEZO2 in the human carotid sinus and carotid body as well as in the petrosal ganglion of the glossopharyngeal nerve and the superior cervical sympathetic ganglion. PIEZO1 and PIEZO2 were detected in different morphotypes of sensory nerve formations in the walls of the carotid sinus and carotid artery walls. In the carotid body, PIEZO1 was present in a small population of type I glomus cells and absent in nerves, whereas PIEZO2 was present in both clusters of type I glomus cells and nerves. The most prominent expression of PIEZO1 and PIEZO2 in the carotid body was found in type II glomus cells. On the other hand, in the petrosal ganglion, around 25% of neurons were PIEZO1-positive, and around 85% were PIEZO2-positive; regarding the superior cervical sympathetic ganglion, around 71% and 86% displayed PIEZO1 and PIEZO2, respectively. The results of this study suggest that PIEZO1 and PIEZO2 could be involved in the detection and/or mechanotransduction of the human carotid sinus, whereas the role of the carotid body is more doubtful since PIEZO1 and PIEZO2 were only detected in some nerves and PIEZO2 was present in a small population of type I glomus cells, with PIEZO1 being absent in these cells. However, since immunoreactivity for PIEZO2 was detected in type II glomus cells, researchers should investigate whether these cells play a role in the detection of mechanical stimuli and/or participate in mechanotransduction.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030386","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The carotid sinus and the carotid body are major peripheral chemo- and baro(mechano)receptors that sense changes in arterial wall pressure and in oxygen, carbon dioxide, and pH in arterial blood. Recently, it was demonstrated that the PIEZO1 and PIEZO2 mechanoreceptor/mechanotransducers are responsible for the baroreflex in the murine aortic arch (aortic sinus). Furthermore, some experimental evidence suggests that the carotid body could participate in mechanosensing. In this study, we used immunohistochemistry and immunofluorescence in conjunction with laser confocal microscopy to study the distribution of PIEZO1 and PIEZO2 in the human carotid sinus and carotid body as well as in the petrosal ganglion of the glossopharyngeal nerve and the superior cervical sympathetic ganglion. PIEZO1 and PIEZO2 were detected in different morphotypes of sensory nerve formations in the walls of the carotid sinus and carotid artery walls. In the carotid body, PIEZO1 was present in a small population of type I glomus cells and absent in nerves, whereas PIEZO2 was present in both clusters of type I glomus cells and nerves. The most prominent expression of PIEZO1 and PIEZO2 in the carotid body was found in type II glomus cells. On the other hand, in the petrosal ganglion, around 25% of neurons were PIEZO1-positive, and around 85% were PIEZO2-positive; regarding the superior cervical sympathetic ganglion, around 71% and 86% displayed PIEZO1 and PIEZO2, respectively. The results of this study suggest that PIEZO1 and PIEZO2 could be involved in the detection and/or mechanotransduction of the human carotid sinus, whereas the role of the carotid body is more doubtful since PIEZO1 and PIEZO2 were only detected in some nerves and PIEZO2 was present in a small population of type I glomus cells, with PIEZO1 being absent in these cells. However, since immunoreactivity for PIEZO2 was detected in type II glomus cells, researchers should investigate whether these cells play a role in the detection of mechanical stimuli and/or participate in mechanotransduction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信