{"title":"Identification of a Possible Endocannabinoid-Mediated Mechanism of Action of Cetylated Fatty Acids.","authors":"Giulia Bononi, Carlotta Granchi, Tiziano Tuccinardi, Filippo Minutolo","doi":"10.3390/biom15030363","DOIUrl":null,"url":null,"abstract":"<p><p>Some musculoskeletal disorders, including osteoarthritis; arthrosis; post-traumatic injuries; and other inflammatory tendon, joint and muscular afflictions, still represent unmet medical needs. Cetylated fatty acids (CFAs) are key components of widely distributed over-the-counter products, especially for topical use, which are intended to reduce symptoms associated with these conditions. Nevertheless, the mechanism of action of CFAs' analgesic and anti-inflammatory properties has not yet been clearly established. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), are known to produce analgesic and anti-inflammatory effects. These compounds undergo physiological inactivation operated by several enzymes, including monoacylglycerol lipase (MAGL). We herein demonstrate for the first time that the therapeutic effects of CFAs may be attributable, at least in part, to their MAGL inhibition activities, which induce a local increase in analgesic/anti-inflammatory endocannabinoids in close proximity to the site of administration. These findings pave the way for the development of new potent local analgesic agents, whose action is based on an indirect cannabinoid effect.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030363","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Some musculoskeletal disorders, including osteoarthritis; arthrosis; post-traumatic injuries; and other inflammatory tendon, joint and muscular afflictions, still represent unmet medical needs. Cetylated fatty acids (CFAs) are key components of widely distributed over-the-counter products, especially for topical use, which are intended to reduce symptoms associated with these conditions. Nevertheless, the mechanism of action of CFAs' analgesic and anti-inflammatory properties has not yet been clearly established. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), are known to produce analgesic and anti-inflammatory effects. These compounds undergo physiological inactivation operated by several enzymes, including monoacylglycerol lipase (MAGL). We herein demonstrate for the first time that the therapeutic effects of CFAs may be attributable, at least in part, to their MAGL inhibition activities, which induce a local increase in analgesic/anti-inflammatory endocannabinoids in close proximity to the site of administration. These findings pave the way for the development of new potent local analgesic agents, whose action is based on an indirect cannabinoid effect.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.