G-Quadruplex Conformational Switching for miR-155-3p Detection Using a Ligand-Based Fluorescence Approach.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-13 DOI:10.3390/biom15030410
Pedro Lourenço, Carla Cruz
{"title":"G-Quadruplex Conformational Switching for miR-155-3p Detection Using a Ligand-Based Fluorescence Approach.","authors":"Pedro Lourenço, Carla Cruz","doi":"10.3390/biom15030410","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA-155-3p (miR-155-3p) is an important biomarker in various pathological conditions, including cancer, making the development of sensitive and specific detection methods crucial. Here, we present a molecular beacon (MB-G4) that underwent a conformational switch upon hybridization with miR-155-3p, enabling the formation of a G-quadruplex (G4) structure. This G4 was recognized by the fluorogenic ligand N-methyl mesoporphyrin IX (NMM), producing a fluorescence signal proportional to the target concentration, making it a new detection method. The conformational dynamics of MB-G4 were characterized through circular dichroism (CD) spectroscopy and native polyacrylamide gel electrophoresis (PAGE), confirming the transition from a hairpin structure to an RNA-DNA hybrid duplex that facilitated G4 formation. The optimization of the experimental conditions, including the potassium chloride (KCl) and NMM concentrations, ensured selective detection with minimal background signal. The detection limit (LOD) was determined to be 10.85 nM, using a linear fluorescence response curve, and the specificity studies demonstrated a clear distinction between miR-155-3p and miR-155-5p. Furthermore, MB-G4 was studied with total RNA extracted from the lung cancer cell line A549 to evaluate its detection in a more complex environment and was able to detect its target, validating its potential for biological sample analysis.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030410","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNA-155-3p (miR-155-3p) is an important biomarker in various pathological conditions, including cancer, making the development of sensitive and specific detection methods crucial. Here, we present a molecular beacon (MB-G4) that underwent a conformational switch upon hybridization with miR-155-3p, enabling the formation of a G-quadruplex (G4) structure. This G4 was recognized by the fluorogenic ligand N-methyl mesoporphyrin IX (NMM), producing a fluorescence signal proportional to the target concentration, making it a new detection method. The conformational dynamics of MB-G4 were characterized through circular dichroism (CD) spectroscopy and native polyacrylamide gel electrophoresis (PAGE), confirming the transition from a hairpin structure to an RNA-DNA hybrid duplex that facilitated G4 formation. The optimization of the experimental conditions, including the potassium chloride (KCl) and NMM concentrations, ensured selective detection with minimal background signal. The detection limit (LOD) was determined to be 10.85 nM, using a linear fluorescence response curve, and the specificity studies demonstrated a clear distinction between miR-155-3p and miR-155-5p. Furthermore, MB-G4 was studied with total RNA extracted from the lung cancer cell line A549 to evaluate its detection in a more complex environment and was able to detect its target, validating its potential for biological sample analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信