Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery.
Arzu Zeynep Karabay, Jaleh Barar, Yalda Hekmatshoar, Yalda Rahbar Saadat
{"title":"Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery.","authors":"Arzu Zeynep Karabay, Jaleh Barar, Yalda Hekmatshoar, Yalda Rahbar Saadat","doi":"10.3390/biom15030394","DOIUrl":null,"url":null,"abstract":"<p><p>Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940522/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.