{"title":"QRNet: A Quaternion-Based Retinex Framework for Enhanced Wireless Capsule Endoscopy Image Quality.","authors":"Vladimir Frants, Sos Agaian","doi":"10.3390/bioengineering12030239","DOIUrl":null,"url":null,"abstract":"<p><p>Wireless capsule endoscopy (WCE) offers a non-invasive diagnostic alternative for the gastrointestinal tract using a battery-powered capsule. Despite advantages, WCE encounters issues with video quality and diagnostic accuracy, often resulting in missing rates of 1-20%. These challenges stem from weak texture characteristics due to non-Lambertian tissue reflections, uneven illumination, and the necessity of color fidelity. Traditional Retinex-based methods used for image enhancement are suboptimal for endoscopy, as they frequently compromise anatomical detail while distorting color. To address these limitations, we introduce QRNet, a novel quaternion-based Retinex framework. QRNet performs image decomposition into reflectance and illumination components within hypercomplex space, maintaining inter-channel relationships that preserve color fidelity. A quaternion wavelet attention mechanism refines essential features while suppressing noise, balancing enhancement and fidelity through an innovative loss function. Experiments on Kvasir-Capsule and Red Lesion Endoscopy datasets demonstrate notable improvements in metrics such as PSNR (+2.3 dB), SSIM (+0.089), and LPIPS (-0.126). Moreover, lesion segmentation accuracy increases by up to 5%, indicating the framework's potential for improving early-stage lesion detection. Ablation studies highlight the quaternion representation's pivotal role in maintaining color consistency, confirming the promise of this advanced approach for clinical settings.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030239","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless capsule endoscopy (WCE) offers a non-invasive diagnostic alternative for the gastrointestinal tract using a battery-powered capsule. Despite advantages, WCE encounters issues with video quality and diagnostic accuracy, often resulting in missing rates of 1-20%. These challenges stem from weak texture characteristics due to non-Lambertian tissue reflections, uneven illumination, and the necessity of color fidelity. Traditional Retinex-based methods used for image enhancement are suboptimal for endoscopy, as they frequently compromise anatomical detail while distorting color. To address these limitations, we introduce QRNet, a novel quaternion-based Retinex framework. QRNet performs image decomposition into reflectance and illumination components within hypercomplex space, maintaining inter-channel relationships that preserve color fidelity. A quaternion wavelet attention mechanism refines essential features while suppressing noise, balancing enhancement and fidelity through an innovative loss function. Experiments on Kvasir-Capsule and Red Lesion Endoscopy datasets demonstrate notable improvements in metrics such as PSNR (+2.3 dB), SSIM (+0.089), and LPIPS (-0.126). Moreover, lesion segmentation accuracy increases by up to 5%, indicating the framework's potential for improving early-stage lesion detection. Ablation studies highlight the quaternion representation's pivotal role in maintaining color consistency, confirming the promise of this advanced approach for clinical settings.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering