Li Yan, Qing Li, Kang Fu, Xiaodong Zhou, Kai Zhang
{"title":"Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis.","authors":"Li Yan, Qing Li, Kang Fu, Xiaodong Zhou, Kai Zhang","doi":"10.3390/bioengineering12030288","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into ultrasound medicine has revolutionized medical imaging, enhancing diagnostic accuracy and clinical workflows. This review focuses on the applications, challenges, and future directions of AI technologies, particularly machine learning (ML) and its subset, deep learning (DL), in ultrasound diagnostics. By leveraging advanced algorithms such as convolutional neural networks (CNNs), AI has significantly improved image acquisition, quality assessment, and objective disease diagnosis. AI-driven solutions now facilitate automated image analysis, intelligent diagnostic assistance, and medical education, enabling precise lesion detection across various organs while reducing physician workload. AI's error detection capabilities further enhance diagnostic accuracy. Looking ahead, the integration of AI with ultrasound is expected to deepen, promoting trends in standardization, personalized treatment, and intelligent healthcare, particularly in underserved areas. Despite its potential, comprehensive assessments of AI's diagnostic accuracy and ethical implications remain limited, necessitating rigorous evaluations to ensure effectiveness in clinical practice. This review provides a systematic evaluation of AI technologies in ultrasound medicine, highlighting their transformative potential to improve global healthcare outcomes.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI) into ultrasound medicine has revolutionized medical imaging, enhancing diagnostic accuracy and clinical workflows. This review focuses on the applications, challenges, and future directions of AI technologies, particularly machine learning (ML) and its subset, deep learning (DL), in ultrasound diagnostics. By leveraging advanced algorithms such as convolutional neural networks (CNNs), AI has significantly improved image acquisition, quality assessment, and objective disease diagnosis. AI-driven solutions now facilitate automated image analysis, intelligent diagnostic assistance, and medical education, enabling precise lesion detection across various organs while reducing physician workload. AI's error detection capabilities further enhance diagnostic accuracy. Looking ahead, the integration of AI with ultrasound is expected to deepen, promoting trends in standardization, personalized treatment, and intelligent healthcare, particularly in underserved areas. Despite its potential, comprehensive assessments of AI's diagnostic accuracy and ethical implications remain limited, necessitating rigorous evaluations to ensure effectiveness in clinical practice. This review provides a systematic evaluation of AI technologies in ultrasound medicine, highlighting their transformative potential to improve global healthcare outcomes.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering