Zhengwu Sun, Payel Sen, Jules Hamers, Thomas Seidel, Andreas Dendorfer, Petra Kameritsch
{"title":"Optimized Conditions for Electrical Tissue Stimulation with Biphasic, Charge-Balanced Impulses.","authors":"Zhengwu Sun, Payel Sen, Jules Hamers, Thomas Seidel, Andreas Dendorfer, Petra Kameritsch","doi":"10.3390/bioengineering12030234","DOIUrl":null,"url":null,"abstract":"<p><p>The cultivation of excitable cells typically profits from continuous electrical stimulation, but electrochemical consequences are mostly harmful and must be minimized. The properties of the electrode materials and stimulation impulses are key. Here, we developed an easy method to analyze the electrochemical impact of biphasic, current-controlled impulses, applied via graphite electrodes, using phenol red as the redox indicator. We also tested the stimulation conditions for the long-term cultivation of myocardial tissue. The colorimetric assay was able to detect ±0.2% deviations in typical positive and negative pulse charges. Phenol red was best preserved (20% degradation over 24 h) by impulses of equivalent positive and negative charges (full charge balance), generated with either manual calibration, capacitive electrode coupling, or feedback regulation of electrode polarization. Feedback regulation established full charge balance at pre-pulse voltages of about 300 mV, but also provided the option to selectively compensate irreversible electrode reactions. Modifications to shape and timing did not affect the electrochemical effects of symmetric impulses. Charge-balanced stimulation maintained more than 80% of the contractility of porcine left ventricular myocardium after 10 days of culture, whereas disbalances of 2-4% provoked weakening and discoloration of the tissues. Active polarization regulation, in contrast to capacitive electrode coupling, reproduced the biological advantages of full charge balance.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cultivation of excitable cells typically profits from continuous electrical stimulation, but electrochemical consequences are mostly harmful and must be minimized. The properties of the electrode materials and stimulation impulses are key. Here, we developed an easy method to analyze the electrochemical impact of biphasic, current-controlled impulses, applied via graphite electrodes, using phenol red as the redox indicator. We also tested the stimulation conditions for the long-term cultivation of myocardial tissue. The colorimetric assay was able to detect ±0.2% deviations in typical positive and negative pulse charges. Phenol red was best preserved (20% degradation over 24 h) by impulses of equivalent positive and negative charges (full charge balance), generated with either manual calibration, capacitive electrode coupling, or feedback regulation of electrode polarization. Feedback regulation established full charge balance at pre-pulse voltages of about 300 mV, but also provided the option to selectively compensate irreversible electrode reactions. Modifications to shape and timing did not affect the electrochemical effects of symmetric impulses. Charge-balanced stimulation maintained more than 80% of the contractility of porcine left ventricular myocardium after 10 days of culture, whereas disbalances of 2-4% provoked weakening and discoloration of the tissues. Active polarization regulation, in contrast to capacitive electrode coupling, reproduced the biological advantages of full charge balance.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering