Bibhuprasad Sahu, Amrutanshu Panigrahi, Abhilash Pati, Manmath Nath Das, Prince Jain, Ghanashyam Sahoo, Haipeng Liu
{"title":"Novel Hybrid Feature Selection Using Binary Portia Spider Optimization Algorithm and Fast mRMR.","authors":"Bibhuprasad Sahu, Amrutanshu Panigrahi, Abhilash Pati, Manmath Nath Das, Prince Jain, Ghanashyam Sahoo, Haipeng Liu","doi":"10.3390/bioengineering12030291","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> The cancer death rate has accelerated at an alarming rate, making accurate diagnosis at the primary stages crucial to enhance prognosis. This has deepened the issue of cancer mortality, which is already at an exponential scale. It has been observed that concentration on datasets drawn from supporting primary sources using machine learning algorithms brings the accuracy expected for cancer diagnosis. <b>Methods:</b> This research presents an innovative cancer classification technique that combines fast minimum redundancy-maximum relevance-based feature selection with Binary Portia Spider Optimization Algorithm to optimize features. The features selected, with the aid of fast mRMR and tested with a range of classifiers, Support Vector Machine, Weighted Support Vector Machine, Extreme Gradient Boosting, Adaptive Boosting, and Random Forest classifier, are tested for comprehensively proofed performance. <b>Results:</b> The classification efficiency of the advanced model is tested on six different cancer datasets that exhibit classification challenges. The empirical analysis confirms that the proposed methodology FmRMR-BPSOA is effective since it reached the highest accuracy of 99.79%. The result is of utmost significance as the proposed model emphasizes the need for alternative and highly efficient greater precision cancer diagnosis. The classification accuracy concludes that the model holds great promise for real-life medical implementations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030291","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The cancer death rate has accelerated at an alarming rate, making accurate diagnosis at the primary stages crucial to enhance prognosis. This has deepened the issue of cancer mortality, which is already at an exponential scale. It has been observed that concentration on datasets drawn from supporting primary sources using machine learning algorithms brings the accuracy expected for cancer diagnosis. Methods: This research presents an innovative cancer classification technique that combines fast minimum redundancy-maximum relevance-based feature selection with Binary Portia Spider Optimization Algorithm to optimize features. The features selected, with the aid of fast mRMR and tested with a range of classifiers, Support Vector Machine, Weighted Support Vector Machine, Extreme Gradient Boosting, Adaptive Boosting, and Random Forest classifier, are tested for comprehensively proofed performance. Results: The classification efficiency of the advanced model is tested on six different cancer datasets that exhibit classification challenges. The empirical analysis confirms that the proposed methodology FmRMR-BPSOA is effective since it reached the highest accuracy of 99.79%. The result is of utmost significance as the proposed model emphasizes the need for alternative and highly efficient greater precision cancer diagnosis. The classification accuracy concludes that the model holds great promise for real-life medical implementations.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering