{"title":"Non-Contact Blood Pressure Monitoring Using Radar Signals: A Dual-Stage Deep Learning Network.","authors":"Pengfei Wang, Minghao Yang, Xiaoxue Zhang, Jianqi Wang, Cong Wang, Hongbo Jia","doi":"10.3390/bioengineering12030252","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging radar sensing technology is revolutionizing cardiovascular monitoring by eliminating direct skin contact. This approach captures vital signs through electromagnetic wave reflections, enabling contactless blood pressure (BP) tracking while maintaining user comfort and privacy. We present a hierarchical neural framework that synergizes spatial and temporal feature learning for radar-driven, contactless BP monitoring. By employing advanced preprocessing techniques, the system captures subtle chest wall vibrations and their second-order derivatives, feeding dual-channel inputs into a hierarchical neural network. Specifically, Stage 1 deploys convolutional depth-adjustable lightweight residual blocks to extract spatial features from micro-motion characteristics, while Stage 2 employs a transformer architecture to establish correlations between these spatial features and BP periodic dynamic variations. Drawing on the intrinsic link between systolic (SBP) and diastolic (DBP) blood pressures, early estimates from Stage 2 are used to expand the feature set for the second-stage network, boosting its predictive power. Validation achieved clinically acceptable errors (SBP: -1.09 ± 5.15 mmHg, DBP: -0.26 ± 4.35 mmHg). Notably, this high degree of accuracy, combined with the ability to estimate BP at 2 s intervals, closely approximates real-time, beat-to-beat monitoring, representing a pivotal breakthrough in non-contact BP monitoring.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030252","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging radar sensing technology is revolutionizing cardiovascular monitoring by eliminating direct skin contact. This approach captures vital signs through electromagnetic wave reflections, enabling contactless blood pressure (BP) tracking while maintaining user comfort and privacy. We present a hierarchical neural framework that synergizes spatial and temporal feature learning for radar-driven, contactless BP monitoring. By employing advanced preprocessing techniques, the system captures subtle chest wall vibrations and their second-order derivatives, feeding dual-channel inputs into a hierarchical neural network. Specifically, Stage 1 deploys convolutional depth-adjustable lightweight residual blocks to extract spatial features from micro-motion characteristics, while Stage 2 employs a transformer architecture to establish correlations between these spatial features and BP periodic dynamic variations. Drawing on the intrinsic link between systolic (SBP) and diastolic (DBP) blood pressures, early estimates from Stage 2 are used to expand the feature set for the second-stage network, boosting its predictive power. Validation achieved clinically acceptable errors (SBP: -1.09 ± 5.15 mmHg, DBP: -0.26 ± 4.35 mmHg). Notably, this high degree of accuracy, combined with the ability to estimate BP at 2 s intervals, closely approximates real-time, beat-to-beat monitoring, representing a pivotal breakthrough in non-contact BP monitoring.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering