Shivum Chokshi, Raghav Gangatirkar, Anish Kandi, Maria DeLeonibus, Mohamed Kamel, Seetharam Chadalavada, Rajul Gupta, Harshitha Munigala, Karthik Tappa, Shayne Kondor, Michael B Burch, Prashanth Ravi
{"title":"Medical 3D Printing Using Material Jetting: Technology Overview, Medical Applications, and Challenges.","authors":"Shivum Chokshi, Raghav Gangatirkar, Anish Kandi, Maria DeLeonibus, Mohamed Kamel, Seetharam Chadalavada, Rajul Gupta, Harshitha Munigala, Karthik Tappa, Shayne Kondor, Michael B Burch, Prashanth Ravi","doi":"10.3390/bioengineering12030249","DOIUrl":null,"url":null,"abstract":"<p><p>Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by the 3DP literature. The technology has been adopted globally across the Americas, Europe, Asia, and Australia. While MJT 3D printers can be expensive, their ability to fabricate highly accurate and multi-color parts provides a lucrative opportunity in the creation of advanced prototypes and medical models. The literature on MJT 3DP has expanded greatly as of late, in part aided by the lowering costs of the technology, and this report is the first review to document the applications of MJT in medicine. Additionally, this report portrays the technological information behind MJT 3DP, cases involving fabricated MJT 3DP models from the University of Cincinnati 3DP lab, as well as the challenges of MJT in a clinical setting, including cost, expertise in managing the machines, and scalability issues. It is expected that MJT 3DP, as imaging and segmentation technologies undergo future improvement, will be best poised with representing the voxel-level-variations captured by radiologic-image-sets due to its capacity for voxel-level-control.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030249","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by the 3DP literature. The technology has been adopted globally across the Americas, Europe, Asia, and Australia. While MJT 3D printers can be expensive, their ability to fabricate highly accurate and multi-color parts provides a lucrative opportunity in the creation of advanced prototypes and medical models. The literature on MJT 3DP has expanded greatly as of late, in part aided by the lowering costs of the technology, and this report is the first review to document the applications of MJT in medicine. Additionally, this report portrays the technological information behind MJT 3DP, cases involving fabricated MJT 3DP models from the University of Cincinnati 3DP lab, as well as the challenges of MJT in a clinical setting, including cost, expertise in managing the machines, and scalability issues. It is expected that MJT 3DP, as imaging and segmentation technologies undergo future improvement, will be best poised with representing the voxel-level-variations captured by radiologic-image-sets due to its capacity for voxel-level-control.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering