Transcranial Direct Current Stimulation Can Modulate Brain Complexity and Connectivity in Children with Autism Spectrum Disorder: Insights from Entropy Analysis.
{"title":"Transcranial Direct Current Stimulation Can Modulate Brain Complexity and Connectivity in Children with Autism Spectrum Disorder: Insights from Entropy Analysis.","authors":"Jiannan Kang, Pengfei Hao, Haiyan Gu, Yukun Liu, Xiaoli Li, Xinling Geng","doi":"10.3390/bioengineering12030283","DOIUrl":null,"url":null,"abstract":"<p><p>The core characteristics of autism spectrum disorder (ASD) are atypical neurodevelopmental disorders. Transcranial direct current stimulation (tDCS), as a non-invasive brain stimulation technique, has been applied in the treatment of various neurodevelopmental disorders. Entropy analysis methods can quantitatively describe the complexity of EEG signals and information transfer. This study recruited 24 children with ASD and 24 age- and gender-matched typically developing (TD) children, using multiple entropy methods to analyze differences in brain complexity and effective connectivity between the two groups. Furthermore, this study explored the regulatory effect of tDCS on brain complexity and effective connectivity in children with ASD. The results showed that children with ASD had lower brain complexity, with excessive effective connectivity in the δ, θ, and α frequency bands and insufficient effective connectivity in the β frequency band. After tDCS intervention, the brain complexity of children with ASD significantly increased, while effective connectivity in the δ and θ frequency bands significantly decreased. The results from behavioral-scale assessments also indicated positive behavioral changes. These findings suggest that tDCS may improve brain function in children with ASD by regulating brain complexity and effective connectivity, leading to behavioral improvements, and they provide new perspectives and directions for intervention research in ASD.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030283","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The core characteristics of autism spectrum disorder (ASD) are atypical neurodevelopmental disorders. Transcranial direct current stimulation (tDCS), as a non-invasive brain stimulation technique, has been applied in the treatment of various neurodevelopmental disorders. Entropy analysis methods can quantitatively describe the complexity of EEG signals and information transfer. This study recruited 24 children with ASD and 24 age- and gender-matched typically developing (TD) children, using multiple entropy methods to analyze differences in brain complexity and effective connectivity between the two groups. Furthermore, this study explored the regulatory effect of tDCS on brain complexity and effective connectivity in children with ASD. The results showed that children with ASD had lower brain complexity, with excessive effective connectivity in the δ, θ, and α frequency bands and insufficient effective connectivity in the β frequency band. After tDCS intervention, the brain complexity of children with ASD significantly increased, while effective connectivity in the δ and θ frequency bands significantly decreased. The results from behavioral-scale assessments also indicated positive behavioral changes. These findings suggest that tDCS may improve brain function in children with ASD by regulating brain complexity and effective connectivity, leading to behavioral improvements, and they provide new perspectives and directions for intervention research in ASD.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering