{"title":"Neural Network-Based Mammography Analysis: Augmentation Techniques for Enhanced Cancer Diagnosis-A Review.","authors":"Linda Blahová, Jozef Kostolný, Ivan Cimrák","doi":"10.3390/bioengineering12030232","DOIUrl":null,"url":null,"abstract":"<p><p>Application of machine learning techniques in breast cancer detection has significantly advanced due to the availability of annotated mammography datasets. This paper provides a review of mammography studies using key datasets such as CBIS-DDSM, VinDr-Mammo, and CSAW-CC, which play a critical role in training classification and detection models. The analysis of the studies produces a set of data augmentation techniques in mammography, and their impact and performance improvements in detecting abnormalities in breast tissue are studied. The study discusses the challenges of dataset imbalances and presents methods to address this issue, like synthetic data generation and GAN augmentation as potential solutions. The work underscores the importance of dataset design dedicated for experiments, detailed annotations, and the usage of machine learning models and architectures in improving breast cancer screening models, with a focus on BI-RADS classification. Future directions include refining augmentation methods, addressing class imbalance, and enhancing model interpretability through tools like Grad-CAM.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030232","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Application of machine learning techniques in breast cancer detection has significantly advanced due to the availability of annotated mammography datasets. This paper provides a review of mammography studies using key datasets such as CBIS-DDSM, VinDr-Mammo, and CSAW-CC, which play a critical role in training classification and detection models. The analysis of the studies produces a set of data augmentation techniques in mammography, and their impact and performance improvements in detecting abnormalities in breast tissue are studied. The study discusses the challenges of dataset imbalances and presents methods to address this issue, like synthetic data generation and GAN augmentation as potential solutions. The work underscores the importance of dataset design dedicated for experiments, detailed annotations, and the usage of machine learning models and architectures in improving breast cancer screening models, with a focus on BI-RADS classification. Future directions include refining augmentation methods, addressing class imbalance, and enhancing model interpretability through tools like Grad-CAM.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering