MiR-29a-3p Ameliorate Behavioral Deficiency in Hypoxia-Ischemia Brain Damage in Neonatal Mice by inhibiting BTG2.

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Qian Luo, Xiaohui Xing, Yan Song, Bing Gu, Quan Hu, Weiyang Liu, Yilei Xiao, Zhen Wang
{"title":"MiR-29a-3p Ameliorate Behavioral Deficiency in Hypoxia-Ischemia Brain Damage in Neonatal Mice by inhibiting BTG2.","authors":"Qian Luo, Xiaohui Xing, Yan Song, Bing Gu, Quan Hu, Weiyang Liu, Yilei Xiao, Zhen Wang","doi":"10.1016/j.bbr.2025.115552","DOIUrl":null,"url":null,"abstract":"<p><p>It has been reported that miR-29a-3p played a part in series neurological disorders. However, it remains unclear whether miR-29a-3p participate in the pathological mechanism in hypoxia-ischemia (HI) brain injury. In this study, we detected the change of miR-29a-3p level in the ipsilateral cortex following HI brain injury and found that miR-29a-3p was significantly increased at 3 days in the ipsilateral cortex following HI insult in neonatal mice. Therefore, we further explored the role of miR-29a-3p in HI brain injury and its molecular mechanism. The results showed that miR-29a-3p mimics attenuated and miR-29a-3p antagomir aggravated brain infarction volume at 3 days following HI insult. We further found that overexpression of miR-29a-3p also suppressed apoptosis and neuroinflammation, reduced synaptic loss and prevent HI-induced microglial morphological changes 3 days following HI insult. Neurobehavioral tests revealed that overexpression of miR-29a-3p could improve both short-term and long-term behavioral defects after HI injury. Furthermore, we proved that miR-29a-3p targets B-cell translocation gene 2 (BTG2) and further inhibits the expression of Bax by luciferase reporter assay and qRT-PCR. Moreover, overexpression of miR-29a-3p, by applying liposomes through intranasal route, could also achieve the same therapeutic effect in HI injury. Our data showed that by inhibiting BTG2/Bax, increasing level of miR-29a-3p might serve as a strategy to prevent brain damage and behavioral deficiency in HI.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115552"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2025.115552","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It has been reported that miR-29a-3p played a part in series neurological disorders. However, it remains unclear whether miR-29a-3p participate in the pathological mechanism in hypoxia-ischemia (HI) brain injury. In this study, we detected the change of miR-29a-3p level in the ipsilateral cortex following HI brain injury and found that miR-29a-3p was significantly increased at 3 days in the ipsilateral cortex following HI insult in neonatal mice. Therefore, we further explored the role of miR-29a-3p in HI brain injury and its molecular mechanism. The results showed that miR-29a-3p mimics attenuated and miR-29a-3p antagomir aggravated brain infarction volume at 3 days following HI insult. We further found that overexpression of miR-29a-3p also suppressed apoptosis and neuroinflammation, reduced synaptic loss and prevent HI-induced microglial morphological changes 3 days following HI insult. Neurobehavioral tests revealed that overexpression of miR-29a-3p could improve both short-term and long-term behavioral defects after HI injury. Furthermore, we proved that miR-29a-3p targets B-cell translocation gene 2 (BTG2) and further inhibits the expression of Bax by luciferase reporter assay and qRT-PCR. Moreover, overexpression of miR-29a-3p, by applying liposomes through intranasal route, could also achieve the same therapeutic effect in HI injury. Our data showed that by inhibiting BTG2/Bax, increasing level of miR-29a-3p might serve as a strategy to prevent brain damage and behavioral deficiency in HI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信