Identifying Hypertrophic or Dilated Cardiomyopathy: Development and Validation of a Fine-Tuned ResNet50 Model Based on Electrocardiogram Image.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jiayu Xu, Bo Chen, Weiyang Liu, Wei Dong, Yan Zhuang, Peifang Zhang, Kunlun He
{"title":"Identifying Hypertrophic or Dilated Cardiomyopathy: Development and Validation of a Fine-Tuned ResNet50 Model Based on Electrocardiogram Image.","authors":"Jiayu Xu, Bo Chen, Weiyang Liu, Wei Dong, Yan Zhuang, Peifang Zhang, Kunlun He","doi":"10.3390/bioengineering12030250","DOIUrl":null,"url":null,"abstract":"<p><p>There is no established detecting tool for hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). This study aimed to develop a deep-learning-based model for identifying HCM and DCM using standard 12-lead electrocardiogram (ECG) images. We obtained a cohort of patients with HCM (171 ECG images) or DCM (364 ECG images), confirmed by cardiovascular magnetic resonance (CMR) examinations, who underwent both ECG and CMR within 30 days at our institution. Age- and sex-matched healthy controls (2314 ECG images) were selected from our Health Check Center. A total of 2849 ECG images were processed via a fine-tuned ResNet50 architecture, with stratified five-fold cross-validation for model training, validation, and testing. The proposed model demonstrated strong performance in distinguishing DCM, achieving an area under the receiver operating curve (AUROC) of 0.996 and an area under the precision-recall curve (AUPRC) of 0.940. For the detection of HCM, the model also achieved an AUROC of 0.980 and an AUPRC of 0.953, respectively. The model prospectively exhibited stability in temporal validation. Furthermore, representative images of the Gradient-weighted Class Activation Mapping (Grad-CAM) technique analysis showed the regions corresponding to the anterior and anteroseptal leads were the most important areas for the prediction of HCM or DCM. This temporally validated fine-tuned ResNet50 model shows promise to inexpensively detect individuals with HCM or DCM.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030250","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There is no established detecting tool for hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). This study aimed to develop a deep-learning-based model for identifying HCM and DCM using standard 12-lead electrocardiogram (ECG) images. We obtained a cohort of patients with HCM (171 ECG images) or DCM (364 ECG images), confirmed by cardiovascular magnetic resonance (CMR) examinations, who underwent both ECG and CMR within 30 days at our institution. Age- and sex-matched healthy controls (2314 ECG images) were selected from our Health Check Center. A total of 2849 ECG images were processed via a fine-tuned ResNet50 architecture, with stratified five-fold cross-validation for model training, validation, and testing. The proposed model demonstrated strong performance in distinguishing DCM, achieving an area under the receiver operating curve (AUROC) of 0.996 and an area under the precision-recall curve (AUPRC) of 0.940. For the detection of HCM, the model also achieved an AUROC of 0.980 and an AUPRC of 0.953, respectively. The model prospectively exhibited stability in temporal validation. Furthermore, representative images of the Gradient-weighted Class Activation Mapping (Grad-CAM) technique analysis showed the regions corresponding to the anterior and anteroseptal leads were the most important areas for the prediction of HCM or DCM. This temporally validated fine-tuned ResNet50 model shows promise to inexpensively detect individuals with HCM or DCM.

目前还没有成熟的检测肥厚型心肌病(HCM)和扩张型心肌病(DCM)的工具。本研究旨在开发一种基于深度学习的模型,利用标准 12 导联心电图(ECG)图像识别 HCM 和 DCM。我们收集了一组经心血管磁共振(CMR)检查确诊的 HCM(171 张心电图图像)或 DCM(364 张心电图图像)患者,这些患者在 30 天内在本机构接受了心电图和 CMR 检查。年龄和性别匹配的健康对照组(2314 张心电图图像)选自本院健康体检中心。通过微调的 ResNet50 架构共处理了 2849 张心电图图像,并对模型的训练、验证和测试进行了分层五次交叉验证。所提出的模型在区分 DCM 方面表现出色,接收者操作曲线下面积(AUROC)达到 0.996,精确度-召回曲线下面积(AUPRC)达到 0.940。在检测 HCM 方面,该模型也分别达到了 0.980 和 0.953 的 AUROC。该模型在前瞻性的时间验证中表现出了稳定性。此外,梯度加权分级活化图(Grad-CAM)技术分析的代表性图像显示,前导联和前隔导联对应的区域是预测 HCM 或 DCM 的最重要区域。这种经过时间验证的微调 ResNet50 模型有望以低成本检测出 HCM 或 DCM 患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信