Jiayu Xu, Bo Chen, Weiyang Liu, Wei Dong, Yan Zhuang, Peifang Zhang, Kunlun He
{"title":"Identifying Hypertrophic or Dilated Cardiomyopathy: Development and Validation of a Fine-Tuned ResNet50 Model Based on Electrocardiogram Image.","authors":"Jiayu Xu, Bo Chen, Weiyang Liu, Wei Dong, Yan Zhuang, Peifang Zhang, Kunlun He","doi":"10.3390/bioengineering12030250","DOIUrl":null,"url":null,"abstract":"<p><p>There is no established detecting tool for hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). This study aimed to develop a deep-learning-based model for identifying HCM and DCM using standard 12-lead electrocardiogram (ECG) images. We obtained a cohort of patients with HCM (171 ECG images) or DCM (364 ECG images), confirmed by cardiovascular magnetic resonance (CMR) examinations, who underwent both ECG and CMR within 30 days at our institution. Age- and sex-matched healthy controls (2314 ECG images) were selected from our Health Check Center. A total of 2849 ECG images were processed via a fine-tuned ResNet50 architecture, with stratified five-fold cross-validation for model training, validation, and testing. The proposed model demonstrated strong performance in distinguishing DCM, achieving an area under the receiver operating curve (AUROC) of 0.996 and an area under the precision-recall curve (AUPRC) of 0.940. For the detection of HCM, the model also achieved an AUROC of 0.980 and an AUPRC of 0.953, respectively. The model prospectively exhibited stability in temporal validation. Furthermore, representative images of the Gradient-weighted Class Activation Mapping (Grad-CAM) technique analysis showed the regions corresponding to the anterior and anteroseptal leads were the most important areas for the prediction of HCM or DCM. This temporally validated fine-tuned ResNet50 model shows promise to inexpensively detect individuals with HCM or DCM.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030250","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is no established detecting tool for hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). This study aimed to develop a deep-learning-based model for identifying HCM and DCM using standard 12-lead electrocardiogram (ECG) images. We obtained a cohort of patients with HCM (171 ECG images) or DCM (364 ECG images), confirmed by cardiovascular magnetic resonance (CMR) examinations, who underwent both ECG and CMR within 30 days at our institution. Age- and sex-matched healthy controls (2314 ECG images) were selected from our Health Check Center. A total of 2849 ECG images were processed via a fine-tuned ResNet50 architecture, with stratified five-fold cross-validation for model training, validation, and testing. The proposed model demonstrated strong performance in distinguishing DCM, achieving an area under the receiver operating curve (AUROC) of 0.996 and an area under the precision-recall curve (AUPRC) of 0.940. For the detection of HCM, the model also achieved an AUROC of 0.980 and an AUPRC of 0.953, respectively. The model prospectively exhibited stability in temporal validation. Furthermore, representative images of the Gradient-weighted Class Activation Mapping (Grad-CAM) technique analysis showed the regions corresponding to the anterior and anteroseptal leads were the most important areas for the prediction of HCM or DCM. This temporally validated fine-tuned ResNet50 model shows promise to inexpensively detect individuals with HCM or DCM.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering