Nathaniel S Tjahjono, Divya Subramanian, Tarik Z Shihabeddin, Hudson D Hicks, Victor D Varner, W Matthew Petroll, David W Schmidtke
{"title":"Effect of Decorin and Aligned Collagen Fibril Topography on TGF-β1 Activation of Corneal Keratocytes.","authors":"Nathaniel S Tjahjono, Divya Subramanian, Tarik Z Shihabeddin, Hudson D Hicks, Victor D Varner, W Matthew Petroll, David W Schmidtke","doi":"10.3390/bioengineering12030259","DOIUrl":null,"url":null,"abstract":"<p><p>During corneal wound healing, transforming growth factor-beta 1 (TGF-β1) causes differentiation of quiescent keratocytes into myofibroblasts. Decorin has been investigated as a promising anti-fibrotic therapeutic for corneal healing due to its interaction with TGF-β1, collagen, and cell surface receptors. In this study, a novel microfluidic method for coating aligned collagen fibrils with decorin was developed to mimic the presence of decorin within the corneal stroma. Decorin was found to bind selectively to collagen and remained bound for at least five days. To investigate the effects of decorin coatings on keratocyte activation, primary rabbit keratocytes were cultured in the presence of TGF-β1 for 5 days on substrates with or without decorin and stained for α-smooth muscle actin (α-SMA). The expression of α-SMA was reduced by similar amounts on monomeric collagen (40%), random collagen fibrils (32%), and aligned collagen fibrils (32%) coated with decorin as controls. However, α-SMA expression was differentially expressed between the collagen substrates not coated with decorin, with significantly lower expression on uncoated aligned collagen fibrils compared to uncoated collagen monomers. Addition of decorin directly to culture media, had a limited effect on reducing myofibroblast differentiation. Taken together, these results demonstrate the importance of topography and ECM composition on keratocyte activation.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030259","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
During corneal wound healing, transforming growth factor-beta 1 (TGF-β1) causes differentiation of quiescent keratocytes into myofibroblasts. Decorin has been investigated as a promising anti-fibrotic therapeutic for corneal healing due to its interaction with TGF-β1, collagen, and cell surface receptors. In this study, a novel microfluidic method for coating aligned collagen fibrils with decorin was developed to mimic the presence of decorin within the corneal stroma. Decorin was found to bind selectively to collagen and remained bound for at least five days. To investigate the effects of decorin coatings on keratocyte activation, primary rabbit keratocytes were cultured in the presence of TGF-β1 for 5 days on substrates with or without decorin and stained for α-smooth muscle actin (α-SMA). The expression of α-SMA was reduced by similar amounts on monomeric collagen (40%), random collagen fibrils (32%), and aligned collagen fibrils (32%) coated with decorin as controls. However, α-SMA expression was differentially expressed between the collagen substrates not coated with decorin, with significantly lower expression on uncoated aligned collagen fibrils compared to uncoated collagen monomers. Addition of decorin directly to culture media, had a limited effect on reducing myofibroblast differentiation. Taken together, these results demonstrate the importance of topography and ECM composition on keratocyte activation.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering