Dynamic Frequency-Decoupled Refinement Network for Polyp Segmentation.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yao Tong, Jingxian Chai, Ziqi Chen, Zuojian Zhou, Yun Hu, Xin Li, Xuebin Qiao, Kongfa Hu
{"title":"Dynamic Frequency-Decoupled Refinement Network for Polyp Segmentation.","authors":"Yao Tong, Jingxian Chai, Ziqi Chen, Zuojian Zhou, Yun Hu, Xin Li, Xuebin Qiao, Kongfa Hu","doi":"10.3390/bioengineering12030277","DOIUrl":null,"url":null,"abstract":"<p><p>Polyp segmentation is crucial for early colorectal cancer detection, but accurately delineating polyps is challenging due to their variations in size, shape, and texture and low contrast with surrounding tissues. Existing methods often rely solely on spatial-domain processing, which struggles to separate high-frequency features (edges, textures) from low-frequency ones (global structures), leading to suboptimal segmentation performance. We propose the Dynamic Frequency-Decoupled Refinement Network (DFDRNet), a novel segmentation framework that integrates frequency-domain and spatial-domain processing. DFDRNet introduces the Frequency Adaptive Decoupling (FAD) module, which dynamically separates high- and low-frequency components, and the Frequency Adaptive Refinement (FAR) module, which refines these components before fusing them with spatial features to enhance segmentation accuracy. Embedded within a U-shaped encoder-decoder framework, DFDRNet achieves state-of-the-art performance across three benchmark datasets, demonstrating superior robustness and efficiency. Our extensive evaluations and ablation studies confirm the effectiveness of DFDRNet in balancing segmentation accuracy with computational efficiency.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030277","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyp segmentation is crucial for early colorectal cancer detection, but accurately delineating polyps is challenging due to their variations in size, shape, and texture and low contrast with surrounding tissues. Existing methods often rely solely on spatial-domain processing, which struggles to separate high-frequency features (edges, textures) from low-frequency ones (global structures), leading to suboptimal segmentation performance. We propose the Dynamic Frequency-Decoupled Refinement Network (DFDRNet), a novel segmentation framework that integrates frequency-domain and spatial-domain processing. DFDRNet introduces the Frequency Adaptive Decoupling (FAD) module, which dynamically separates high- and low-frequency components, and the Frequency Adaptive Refinement (FAR) module, which refines these components before fusing them with spatial features to enhance segmentation accuracy. Embedded within a U-shaped encoder-decoder framework, DFDRNet achieves state-of-the-art performance across three benchmark datasets, demonstrating superior robustness and efficiency. Our extensive evaluations and ablation studies confirm the effectiveness of DFDRNet in balancing segmentation accuracy with computational efficiency.

息肉分割对于早期结直肠癌的检测至关重要,但由于息肉的大小、形状和纹理各不相同,而且与周围组织的对比度较低,因此准确划分息肉具有挑战性。现有方法通常只依赖空间域处理,难以将高频特征(边缘、纹理)与低频特征(整体结构)分离,导致分割效果不理想。我们提出了动态频率耦合细化网络(DFDRNet),这是一种整合了频域和空间域处理的新型分割框架。DFDRNet 引入了频率自适应解耦 (FAD) 模块和频率自适应细化 (FAR) 模块,前者可动态分离高频和低频成分,后者可在将这些成分与空间特征融合之前对其进行细化,从而提高分割精度。DFDRNet 嵌入 U 型编码器-解码器框架,在三个基准数据集上实现了最先进的性能,显示出卓越的鲁棒性和效率。我们的广泛评估和消融研究证实了 DFDRNet 在平衡分割准确性和计算效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信