Comparative Evaluation of Compression Testing Methods for Murine Lumbar Vertebral Bodies: Identifying Most Reliable and Reproducible Techniques for Assessing Compressive Strength.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Daniel Kronenberg, Britta Wieskoetter, Sarah Soeger, Heriburg Hidding, Melanie Timmen, Michael J Raschke, Richard Stange
{"title":"Comparative Evaluation of Compression Testing Methods for Murine Lumbar Vertebral Bodies: Identifying Most Reliable and Reproducible Techniques for Assessing Compressive Strength.","authors":"Daniel Kronenberg, Britta Wieskoetter, Sarah Soeger, Heriburg Hidding, Melanie Timmen, Michael J Raschke, Richard Stange","doi":"10.3390/bioengineering12030273","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates four compression testing methods to determine the most reliable and reproducible technique for assessing the compression strength of murine lumbar vertebral bodies. Twenty female C57BL/6 mice (12 weeks old) were randomized into four groups: Group 1, compression of the complete lumbar vertebral body (LVB) with dorsal spinal processes; Group 2, compression at the vertebral body surface; Group 3, compression at the vertebral body surface after vertebral arch resection; Group 4, resection of the vertebral arch with straightening of the intervertebral joint surface. A mono-axial static testing machine applied compression, measuring load to failure, stiffness, yield load, and elasticity modulus. Method 1 resulted in significantly higher load-to-failure and yield-to-failure (25.9 N compared to 18.2 N, and twice 12 N for Methods 2-4), with the least variation in relative values. Method 3 had increased stiffness and a significantly higher Young's modulus (232 N/mm, in contrast to 101, 130, and 145 N/mm for Methods 1, 2, and 4, respectively) but yielded inconsistent results. Method 4 showed the greatest variability across specimens. Method 2 yields suitable data quality as well, albeit with a slightly higher variation, and is the recommended procedure if the spinal processes have to be excluded from the measurement. Based on these findings, Method 1 produced the most consistent and reproducible data and is recommended for future studies evaluating vertebral biomechanics in mice.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates four compression testing methods to determine the most reliable and reproducible technique for assessing the compression strength of murine lumbar vertebral bodies. Twenty female C57BL/6 mice (12 weeks old) were randomized into four groups: Group 1, compression of the complete lumbar vertebral body (LVB) with dorsal spinal processes; Group 2, compression at the vertebral body surface; Group 3, compression at the vertebral body surface after vertebral arch resection; Group 4, resection of the vertebral arch with straightening of the intervertebral joint surface. A mono-axial static testing machine applied compression, measuring load to failure, stiffness, yield load, and elasticity modulus. Method 1 resulted in significantly higher load-to-failure and yield-to-failure (25.9 N compared to 18.2 N, and twice 12 N for Methods 2-4), with the least variation in relative values. Method 3 had increased stiffness and a significantly higher Young's modulus (232 N/mm, in contrast to 101, 130, and 145 N/mm for Methods 1, 2, and 4, respectively) but yielded inconsistent results. Method 4 showed the greatest variability across specimens. Method 2 yields suitable data quality as well, albeit with a slightly higher variation, and is the recommended procedure if the spinal processes have to be excluded from the measurement. Based on these findings, Method 1 produced the most consistent and reproducible data and is recommended for future studies evaluating vertebral biomechanics in mice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信