The Properties and Applicability of Bioprinting in the Field of Maxillofacial Surgery.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Luca Michelutti, Alessandro Tel, Massimo Robiony, Shankeeth Vinayahalingam, Edoardo Agosti, Tamara Ius, Caterina Gagliano, Marco Zeppieri
{"title":"The Properties and Applicability of Bioprinting in the Field of Maxillofacial Surgery.","authors":"Luca Michelutti, Alessandro Tel, Massimo Robiony, Shankeeth Vinayahalingam, Edoardo Agosti, Tamara Ius, Caterina Gagliano, Marco Zeppieri","doi":"10.3390/bioengineering12030251","DOIUrl":null,"url":null,"abstract":"<p><p>Perhaps the most innovative branch of medicine is represented by regenerative medicine. It deals with regenerating or replacing tissues damaged by disease or aging. The innovative frontier of this branch is represented by bioprinting. This technology aims to reconstruct tissues, organs, and anatomical structures, such as those in the head and neck region. This would mean revolutionizing therapeutic and surgical approaches in the management of multiple conditions in which a conspicuous amount of tissue is lost. The application of bioprinting for the reconstruction of anatomical areas removed due to the presence of malignancy would represent a revolutionary new step in personalized and precision medicine. This review aims to investigate recent advances in the use of biomaterials for the reconstruction of anatomical structures of the head-neck region, particularly those of the oral cavity. The characteristics and properties of each biomaterial currently available will be presented, as well as their potential applicability in the reconstruction of areas affected by neoplasia damaged after surgery. In addition, this study aims to examine the current limitations and challenges and to analyze the future prospects of this technology in maxillofacial surgery.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030251","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perhaps the most innovative branch of medicine is represented by regenerative medicine. It deals with regenerating or replacing tissues damaged by disease or aging. The innovative frontier of this branch is represented by bioprinting. This technology aims to reconstruct tissues, organs, and anatomical structures, such as those in the head and neck region. This would mean revolutionizing therapeutic and surgical approaches in the management of multiple conditions in which a conspicuous amount of tissue is lost. The application of bioprinting for the reconstruction of anatomical areas removed due to the presence of malignancy would represent a revolutionary new step in personalized and precision medicine. This review aims to investigate recent advances in the use of biomaterials for the reconstruction of anatomical structures of the head-neck region, particularly those of the oral cavity. The characteristics and properties of each biomaterial currently available will be presented, as well as their potential applicability in the reconstruction of areas affected by neoplasia damaged after surgery. In addition, this study aims to examine the current limitations and challenges and to analyze the future prospects of this technology in maxillofacial surgery.

再生医学可能是最具创新性的医学分支。它涉及再生或替换因疾病或衰老而受损的组织。生物打印技术是这一分支的创新前沿。这项技术旨在重建组织、器官和解剖结构,例如头颈部的组织、器官和解剖结构。这意味着在治疗多种组织明显缺失的疾病时,治疗和手术方法将发生革命性的变化。应用生物打印技术重建因恶性肿瘤而被切除的解剖区域,将代表着个性化和精准医疗迈出了革命性的新一步。本综述旨在探究使用生物材料重建头颈部解剖结构,尤其是口腔解剖结构的最新进展。本综述将介绍目前可用的每种生物材料的特点和性能,以及它们在重建手术后受损的受肿瘤影响区域方面的潜在适用性。此外,本研究还将探讨这一技术目前存在的局限性和面临的挑战,并分析其在颌面外科中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信