Deep Multi-Modal Skin-Imaging-Based Information-Switching Network for Skin Lesion Recognition.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yingzhe Yu, Huiqiong Jia, Li Zhang, Suling Xu, Xiaoxia Zhu, Jiucun Wang, Fangfang Wang, Lianyi Han, Haoqiang Jiang, Qiongyan Zhou, Chao Xin
{"title":"Deep Multi-Modal Skin-Imaging-Based Information-Switching Network for Skin Lesion Recognition.","authors":"Yingzhe Yu, Huiqiong Jia, Li Zhang, Suling Xu, Xiaoxia Zhu, Jiucun Wang, Fangfang Wang, Lianyi Han, Haoqiang Jiang, Qiongyan Zhou, Chao Xin","doi":"10.3390/bioengineering12030282","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of skin lesions places a heavy burden on global health resources and necessitates an early and precise diagnosis for successful treatment. The diagnostic potential of recent multi-modal skin lesion detection algorithms is limited because they ignore dynamic interactions and information sharing across modalities at various feature scales. To address this, we propose a deep learning framework, Multi-Modal Skin-Imaging-based Information-Switching Network (MDSIS-Net), for end-to-end skin lesion recognition. MDSIS-Net extracts intra-modality features using transfer learning in a multi-scale fully shared convolutional neural network and introduces an innovative information-switching module. A cross-attention mechanism dynamically calibrates and integrates features across modalities to improve inter-modality associations and feature representation in this module. MDSIS-Net is tested on clinical disfiguring dermatosis data and the public Derm7pt melanoma dataset. A Visually Intelligent System for Image Analysis (VISIA) captures five modalities: spots, red marks, ultraviolet (UV) spots, porphyrins, and brown spots for disfiguring dermatosis. The model performs better than existing approaches with an mAP of 0.967, accuracy of 0.960, precision of 0.935, recall of 0.960, and f1-score of 0.947. Using clinical and dermoscopic pictures from the Derm7pt dataset, MDSIS-Net outperforms current benchmarks for melanoma, with an mAP of 0.877, accuracy of 0.907, precision of 0.911, recall of 0.815, and f1-score of 0.851. The model's interpretability is proven by Grad-CAM heatmaps correlating with clinical diagnostic focus areas. In conclusion, our deep multi-modal information-switching model enhances skin lesion identification by capturing relationship features and fine-grained details across multi-modal images, improving both accuracy and interpretability. This work advances clinical decision making and lays a foundation for future developments in skin lesion diagnosis and treatment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rising prevalence of skin lesions places a heavy burden on global health resources and necessitates an early and precise diagnosis for successful treatment. The diagnostic potential of recent multi-modal skin lesion detection algorithms is limited because they ignore dynamic interactions and information sharing across modalities at various feature scales. To address this, we propose a deep learning framework, Multi-Modal Skin-Imaging-based Information-Switching Network (MDSIS-Net), for end-to-end skin lesion recognition. MDSIS-Net extracts intra-modality features using transfer learning in a multi-scale fully shared convolutional neural network and introduces an innovative information-switching module. A cross-attention mechanism dynamically calibrates and integrates features across modalities to improve inter-modality associations and feature representation in this module. MDSIS-Net is tested on clinical disfiguring dermatosis data and the public Derm7pt melanoma dataset. A Visually Intelligent System for Image Analysis (VISIA) captures five modalities: spots, red marks, ultraviolet (UV) spots, porphyrins, and brown spots for disfiguring dermatosis. The model performs better than existing approaches with an mAP of 0.967, accuracy of 0.960, precision of 0.935, recall of 0.960, and f1-score of 0.947. Using clinical and dermoscopic pictures from the Derm7pt dataset, MDSIS-Net outperforms current benchmarks for melanoma, with an mAP of 0.877, accuracy of 0.907, precision of 0.911, recall of 0.815, and f1-score of 0.851. The model's interpretability is proven by Grad-CAM heatmaps correlating with clinical diagnostic focus areas. In conclusion, our deep multi-modal information-switching model enhances skin lesion identification by capturing relationship features and fine-grained details across multi-modal images, improving both accuracy and interpretability. This work advances clinical decision making and lays a foundation for future developments in skin lesion diagnosis and treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信