{"title":"Can Infrared Thermal Imaging Reflect Exercise Load? An Incremental Cycling Exercise Study.","authors":"Chenxi Hu, Ning Du, Zhongqian Liu, Yafeng Song","doi":"10.3390/bioengineering12030280","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the training load is crucial in sports science research, as it provides scientific evidence for assessing training effects, optimizing athletic performance, and preventing overtraining by quantifying both external and internal loads. Although traditional monitoring methods have made significant progress, infrared thermography (IRT) technology, with its non-contact, real-time, and non-invasive characteristics, is gradually emerging as an effective tool for evaluating the relationship between the training load and physiological responses. This study evaluated 31 healthy male adults (age 21.9 ± 2.7 years, weight 75 ± 8.26 kg, and training duration 240 ± 65 min/week) performing incremental exhaustive exercise on a cycle ergometer (with a 60W starting load, increasing by 20W per minute). Entropy analysis was used to quantitatively assess the surface radiation patterns of regions of interest (forehead, chest, and abdomen) obtained through thermal imaging. Compared to baseline, significant differences in the surface radiation patterns of the regions of interest were observed at the point of exhaustion (<i>p</i> ≤ 0.01). Correlation analysis revealed strong associations between the external load, oxygen consumption, and chest temperature entropy (r = 0.973 and 0.980). Cluster analysis of the chest entropy, external load, and oxygen consumption showed a non-linear increasing trend in their inter-relationships. Further individual analysis demonstrated positive correlations between the percentage increase in the chest entropy and both the external load (r = 0.70-0.98) and oxygen consumption (r = 0.65-0.97). Entropy analysis offers a new approach for quantitatively assessing surface radiation patterns from infrared thermography, and reveals the coupling relationship between thermoregulation and metabolic responses during exercise.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030280","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring the training load is crucial in sports science research, as it provides scientific evidence for assessing training effects, optimizing athletic performance, and preventing overtraining by quantifying both external and internal loads. Although traditional monitoring methods have made significant progress, infrared thermography (IRT) technology, with its non-contact, real-time, and non-invasive characteristics, is gradually emerging as an effective tool for evaluating the relationship between the training load and physiological responses. This study evaluated 31 healthy male adults (age 21.9 ± 2.7 years, weight 75 ± 8.26 kg, and training duration 240 ± 65 min/week) performing incremental exhaustive exercise on a cycle ergometer (with a 60W starting load, increasing by 20W per minute). Entropy analysis was used to quantitatively assess the surface radiation patterns of regions of interest (forehead, chest, and abdomen) obtained through thermal imaging. Compared to baseline, significant differences in the surface radiation patterns of the regions of interest were observed at the point of exhaustion (p ≤ 0.01). Correlation analysis revealed strong associations between the external load, oxygen consumption, and chest temperature entropy (r = 0.973 and 0.980). Cluster analysis of the chest entropy, external load, and oxygen consumption showed a non-linear increasing trend in their inter-relationships. Further individual analysis demonstrated positive correlations between the percentage increase in the chest entropy and both the external load (r = 0.70-0.98) and oxygen consumption (r = 0.65-0.97). Entropy analysis offers a new approach for quantitatively assessing surface radiation patterns from infrared thermography, and reveals the coupling relationship between thermoregulation and metabolic responses during exercise.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering