Ana S Pinto, Carolina Maia, Sara A Sousa, Tânia Tavares, José C M Pires
{"title":"Amino Acid and Carotenoid Profiles of <i>Chlorella vulgaris</i> During Two-Stage Cultivation at Different Salinities.","authors":"Ana S Pinto, Carolina Maia, Sara A Sousa, Tânia Tavares, José C M Pires","doi":"10.3390/bioengineering12030284","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgae are valuable sources of bioactive compounds. However, their production requires strategies to enhance metabolic responses. This study explores how <i>Chlorella vulgaris</i> responds to different salinity conditions using a two-stage cultivation strategy, assessing the change in amino acid and carotenoid content on microalgae over time. First, microalgae were cultivated under optimal conditions, followed by exposure to different salinity levels (150 mM and 300 mM NaCl). Growth kinetics, nutrient uptake, and biochemical composition were analysed, revealing distinct salinity-induced responses. Similar specific growth rates were achieved across all assays, while nitrate removal improved under salinity and phosphate uptake decreased. Amino acid profiling showed significant declines in the content of several compounds and carotenoid content also presented declining trends, although moderate salinity mitigated degradation in key pigments. Principal component analysis identified high correlations between amino acids and carotenoids contents, forming groups of compounds with similar variations. These findings contribute to a better understanding of the salinity-induced response of <i>C. vulgaris</i>, offering insights for biotechnology applications. By optimising cultivation conditions, salinity could enhance bioactive compound retention, supporting the development of sustainable microalgae-based products.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030284","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae are valuable sources of bioactive compounds. However, their production requires strategies to enhance metabolic responses. This study explores how Chlorella vulgaris responds to different salinity conditions using a two-stage cultivation strategy, assessing the change in amino acid and carotenoid content on microalgae over time. First, microalgae were cultivated under optimal conditions, followed by exposure to different salinity levels (150 mM and 300 mM NaCl). Growth kinetics, nutrient uptake, and biochemical composition were analysed, revealing distinct salinity-induced responses. Similar specific growth rates were achieved across all assays, while nitrate removal improved under salinity and phosphate uptake decreased. Amino acid profiling showed significant declines in the content of several compounds and carotenoid content also presented declining trends, although moderate salinity mitigated degradation in key pigments. Principal component analysis identified high correlations between amino acids and carotenoids contents, forming groups of compounds with similar variations. These findings contribute to a better understanding of the salinity-induced response of C. vulgaris, offering insights for biotechnology applications. By optimising cultivation conditions, salinity could enhance bioactive compound retention, supporting the development of sustainable microalgae-based products.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering