{"title":"Enhancing Landmark Point Detection in <i>Eriocheir Sinensis</i> Carapace with Differentiable End-to-End Networks.","authors":"Chong Wu, Shuxian Wang, Shengmao Zhang, Hanfeng Zheng, Wei Wang, Shenglong Yang","doi":"10.3390/ani15060836","DOIUrl":null,"url":null,"abstract":"<p><p>This research proposes using a neural network to detect and identify the landmark points of the carapace of the Chinese mitten crab, with the aim of improving efficiency in observation, measurement, and statistics in breeding and sales. A 37-point localization framework was developed for the carapace, with the dataset augmented through random distortions, rotations, and occlusions to enhance generalization capability. Three types of convolutional neural network models were used to compare detection accuracy, generalization ability, and model power consumption, with different loss functions compared. The results showed that the Convolutional Neural Network (CNN) model based on the Differentiable Spatial to Numerical Transform (DSNT) module had the highest R<sup>2</sup> value of 0.9906 on the test set, followed by the CNN model based on the Gaussian heatmap at 0.9846. The DSNT-based CNN model exhibited optimal computational efficiency, particularly in power consumption metrics. This research demonstrates that the CNN model based on the DSNT module has great potential in detecting landmark points for the Chinese mitten crab, reducing manual workload in breeding observation and quality inspection, and improving efficiency.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15060836","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes using a neural network to detect and identify the landmark points of the carapace of the Chinese mitten crab, with the aim of improving efficiency in observation, measurement, and statistics in breeding and sales. A 37-point localization framework was developed for the carapace, with the dataset augmented through random distortions, rotations, and occlusions to enhance generalization capability. Three types of convolutional neural network models were used to compare detection accuracy, generalization ability, and model power consumption, with different loss functions compared. The results showed that the Convolutional Neural Network (CNN) model based on the Differentiable Spatial to Numerical Transform (DSNT) module had the highest R2 value of 0.9906 on the test set, followed by the CNN model based on the Gaussian heatmap at 0.9846. The DSNT-based CNN model exhibited optimal computational efficiency, particularly in power consumption metrics. This research demonstrates that the CNN model based on the DSNT module has great potential in detecting landmark points for the Chinese mitten crab, reducing manual workload in breeding observation and quality inspection, and improving efficiency.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).