Neem seed protein hydrolysates alleviate iron-induced cardiac injury via effects on angiotensin-converting enzyme, purinergic enzymes, redox balance, and lipid metabolism.
Marvellous A Acho, Ochuko L Erukainure, Veronica F Salau, Osarenkhoe O Osemwegie, Eric Amonsou, Rotimi O Arise
{"title":"Neem seed protein hydrolysates alleviate iron-induced cardiac injury via effects on angiotensin-converting enzyme, purinergic enzymes, redox balance, and lipid metabolism.","authors":"Marvellous A Acho, Ochuko L Erukainure, Veronica F Salau, Osarenkhoe O Osemwegie, Eric Amonsou, Rotimi O Arise","doi":"10.1080/13813455.2025.2483912","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the cardioprotective effects of <1 kDa peptide fractions from neem seed protein hydrolysates (NSPHs) in cardiac tissues <i>ex vivo</i>. Oxidative injury was induced in cardiac tissues from male Wister rats by incubating with 0.1 mM FeSO<sub>4</sub> (pro-oxidant) for 30 minutes. Untreated tissues lacked peptide fractions, while normal control tissues lacked peptide and pro-oxidant. Treatment with the peptides increased the activities/levels of catalase, superoxide dismutase, ENTPDase, 5'NTPDase, glutathione, and HDL-cholesterol. Conversely, the levels/activities of malondialdehyde, nitric oxide, cholesterol, LDL-cholesterol, ACE, acetylcholinesterase, ATPase decreased following treatment with NSPH peptide fractions. Furthermore, the peptides depleted oxidative metabolites, while concomitantly inactivating plasmalogen synthesis and beta-oxidation of long-chain saturated fatty acids. These findings suggest that <1 kDa peptide fractions from neem seed protein hydrolysates have cardioprotective properties, potentially offering a natural therapeutic option for managing oxidative cardiac dysfunction through the regulation of oxidative stress, cholinesterase and purinergic activities, and lipid metabolism.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-13"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2025.2483912","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the cardioprotective effects of <1 kDa peptide fractions from neem seed protein hydrolysates (NSPHs) in cardiac tissues ex vivo. Oxidative injury was induced in cardiac tissues from male Wister rats by incubating with 0.1 mM FeSO4 (pro-oxidant) for 30 minutes. Untreated tissues lacked peptide fractions, while normal control tissues lacked peptide and pro-oxidant. Treatment with the peptides increased the activities/levels of catalase, superoxide dismutase, ENTPDase, 5'NTPDase, glutathione, and HDL-cholesterol. Conversely, the levels/activities of malondialdehyde, nitric oxide, cholesterol, LDL-cholesterol, ACE, acetylcholinesterase, ATPase decreased following treatment with NSPH peptide fractions. Furthermore, the peptides depleted oxidative metabolites, while concomitantly inactivating plasmalogen synthesis and beta-oxidation of long-chain saturated fatty acids. These findings suggest that <1 kDa peptide fractions from neem seed protein hydrolysates have cardioprotective properties, potentially offering a natural therapeutic option for managing oxidative cardiac dysfunction through the regulation of oxidative stress, cholinesterase and purinergic activities, and lipid metabolism.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.