{"title":"Leveraging Whole-Genome Resequencing to Uncover Genetic Diversity and Promote Conservation Strategies for Ruminants in Asia.","authors":"Qinqian Wang, Ying Lu, Mengfei Li, Zhendong Gao, Dongfang Li, Yuyang Gao, Weidong Deng, Jiao Wu","doi":"10.3390/ani15060831","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-genome resequencing (WGRS) is a critical branch of whole-genome sequencing (WGS), primarily targeting species with existing reference genomes. By aligning sequencing data to the reference genome, WGRS enables precise detection of genetic variations in individuals or populations. As a core technology in genomic research, WGS holds profound significance in ruminant studies. It not only reveals the intricate structure of ruminant genomes but also provides essential data for deciphering gene function, variation patterns, and evolutionary processes, thereby advancing the exploration of ruminant genetic mechanisms. However, WGS still faces several challenges, such as incomplete and inaccurate genome assembly, as well as the incomplete annotation of numerous unknown genes or gene functions. Although WGS can identify a vast number of genomic variations, the specific relationships between these variations and phenotypes often remain unclear, which limits its potential in functional studies and breeding applications. By performing WGRS on multiple samples, these assembly challenges can be effectively addressed, particularly in regions with high repeat content or complex structural variations. WGRS can accurately identify subtle variations among different individuals or populations and further elucidate their associations with specific traits, thereby overcoming the limitations of WGS and providing more precise genetic information for functional research and breeding applications. This review systematically summarizes the latest applications of WGRS in the analysis of ruminant genetic structures, genetic diversity, economic traits, and adaptive traits, while also discussing the challenges faced by this technology. It aims to provide a scientific foundation for the improvement and conservation of ruminant genetic resources.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15060831","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-genome resequencing (WGRS) is a critical branch of whole-genome sequencing (WGS), primarily targeting species with existing reference genomes. By aligning sequencing data to the reference genome, WGRS enables precise detection of genetic variations in individuals or populations. As a core technology in genomic research, WGS holds profound significance in ruminant studies. It not only reveals the intricate structure of ruminant genomes but also provides essential data for deciphering gene function, variation patterns, and evolutionary processes, thereby advancing the exploration of ruminant genetic mechanisms. However, WGS still faces several challenges, such as incomplete and inaccurate genome assembly, as well as the incomplete annotation of numerous unknown genes or gene functions. Although WGS can identify a vast number of genomic variations, the specific relationships between these variations and phenotypes often remain unclear, which limits its potential in functional studies and breeding applications. By performing WGRS on multiple samples, these assembly challenges can be effectively addressed, particularly in regions with high repeat content or complex structural variations. WGRS can accurately identify subtle variations among different individuals or populations and further elucidate their associations with specific traits, thereby overcoming the limitations of WGS and providing more precise genetic information for functional research and breeding applications. This review systematically summarizes the latest applications of WGRS in the analysis of ruminant genetic structures, genetic diversity, economic traits, and adaptive traits, while also discussing the challenges faced by this technology. It aims to provide a scientific foundation for the improvement and conservation of ruminant genetic resources.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).