Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-05-01 Epub Date: 2025-03-26 DOI:10.1016/j.ajhg.2025.02.020
Zikun Yang, Chen Wang, Yuridia Selene Posadas-Garcia, Valeria Añorve-Garibay, Badri Vardarajan, Andrés Moreno Estrada, Mashaal Sohail, Richard Mayeux, Iuliana Ionita-Laza
{"title":"Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.","authors":"Zikun Yang, Chen Wang, Yuridia Selene Posadas-Garcia, Valeria Añorve-Garibay, Badri Vardarajan, Andrés Moreno Estrada, Mashaal Sohail, Richard Mayeux, Iuliana Ionita-Laza","doi":"10.1016/j.ajhg.2025.02.020","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1215-1232"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.02.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.

利用 CARMA-X 对混血种群进行精细绘图,并将其应用于拉丁美洲研究。
在祖先多样化人群中进行的全基因组关联研究(GWASs)正在迅速扩大,为新基因的发现提供了独特的机会,并增加了非欧洲个体遗传发现的实用性。在GWAS基因座上识别假定的因果变异的一种流行技术是通过统计精细映射。尽管付出了巨大的努力,精细绘图仍然是一项非常具有挑战性的任务,即使是在单一、同质人群的相对简单的研究场景中也是如此。对于混合个体的研究,例如在拉丁美洲和加勒比地区,基因发现的方法仍然有限。在这里,我们提出了一个用于混合种群精细映射的贝叶斯模型,CARMA-X,它解决了混合个体的一些独特挑战。所提出的方法包括一种连锁不平衡(LD)矩阵的估计方法,该方法考虑了混合个体的小参考面板、种群间的异质性和跨祖先LD,以及一种贝叶斯假设检验,当依赖中等大小的外部参考面板进行LD估计时,该方法可导致稳健的精细映射。通过仿真,我们比较了最近提出的用于多祖先研究的精细映射方法的性能,并表明所提出的模型在控制错误发现方面提供了更高的能力,特别是在使用样本外LD矩阵时。我们通过两个拉丁美洲基因研究的应用进一步说明了我们的方法,分别是多米尼加共和国和墨西哥生物银行的阿尔茨海默氏病(EFIGA)研究,我们通过优先考虑假定的因果变异和基因来展示建模祖先特异性效应的好处,包括在非洲和美洲原住民祖先中由祖先特异性效应驱动的几个发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信