{"title":"Breast cancer-derived exosomal miR-105-5p facilitates the transformation of NFs into CAFs through LATS2-NF-κB signaling.","authors":"Xiaodi Ding, Zhimei Sheng, Jiayu Cui, Meimei Cui, Liying Zhang, Ruijun Feng, Yongming Wang, Wei Sun, Xiurong Zhang, Lihong Shi, Baogang Zhang","doi":"10.3724/abbs.2025017","DOIUrl":null,"url":null,"abstract":"<p><p>Studies of cell-to-cell activities in the tumor microenvironment (TME) have identified multiple potential targets for oncotherapy. The interplay between tumor cells and neighboring cancer-associated fibroblasts (CAFs) persists in all stages of tumor progression. In this study, we reveal that exosomes from breast cancer cells can be endocytosed into fibroblasts and transform normal fibroblasts (NFs) into CAFs and that the ability of exosomes from highly metastatic breast cancer cells is greater than that of those from poorly metastatic breast cancer cells. Further investigation reveals that exosomes from highly metastatic breast cancer cells contain much more miR-105-5p than those from poorly metastatic breast cells do and that exosomal miR-105-5p facilitates the transformation of NFs to CAFs. A detailed study reveals that RBMY1A1-dependent sorting of miR-105-5p into fibroblasts and subsequent internalization of miR-105-5p promote the transformation of NFs to CAFs by downregulating LATS2 expression and activating NF-κB signaling, which concurrently facilitates the EMT of breast cancer cells. Thus, our results indicate that exosomal miR-105-5p may be a potential target for novel therapeutic strategies to prevent the coevolution of breast cancer cells and CAFs.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2025017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies of cell-to-cell activities in the tumor microenvironment (TME) have identified multiple potential targets for oncotherapy. The interplay between tumor cells and neighboring cancer-associated fibroblasts (CAFs) persists in all stages of tumor progression. In this study, we reveal that exosomes from breast cancer cells can be endocytosed into fibroblasts and transform normal fibroblasts (NFs) into CAFs and that the ability of exosomes from highly metastatic breast cancer cells is greater than that of those from poorly metastatic breast cancer cells. Further investigation reveals that exosomes from highly metastatic breast cancer cells contain much more miR-105-5p than those from poorly metastatic breast cells do and that exosomal miR-105-5p facilitates the transformation of NFs to CAFs. A detailed study reveals that RBMY1A1-dependent sorting of miR-105-5p into fibroblasts and subsequent internalization of miR-105-5p promote the transformation of NFs to CAFs by downregulating LATS2 expression and activating NF-κB signaling, which concurrently facilitates the EMT of breast cancer cells. Thus, our results indicate that exosomal miR-105-5p may be a potential target for novel therapeutic strategies to prevent the coevolution of breast cancer cells and CAFs.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.