Enhancing the evaporation rate of 3D solar evaporators by coating their surface with N-doped graphene and MnCoGe alloy compounds.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
E Valadez-Renteria, I Aldana, A Ayala-Fonseca, J Zamora, P Salas, J Oliva
{"title":"Enhancing the evaporation rate of 3D solar evaporators by coating their surface with N-doped graphene and MnCoGe alloy compounds.","authors":"E Valadez-Renteria, I Aldana, A Ayala-Fonseca, J Zamora, P Salas, J Oliva","doi":"10.1016/j.jenvman.2025.125124","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of solar evaporators to produce fresh water from seawater and from polluted water sources is a promising approach to palliate the global water shortage crisis. In this research, coconut/agave-fibers based 3D-sponges were used as biodegradable support to make solar evaporators. A graphene coating was deposited on the biodegradable sponges (FG evaporator) and was evaluated to desalinate seawater (from Puerto-Vallarta Beach, Mexico) under natural sunlight. This evaporator produced an evaporation-rate/evaporation-efficiency of 1.55 kg m<sup>-2</sup>·h<sup>-1</sup>/77.3 %. Next, a second evaporator was fabricated by depositing an extra layer of N-doped graphene (NG) on the graphene layer and this evaporator reached an evaporation-rate/evaporation-efficiency of 2.05 kg m<sup>-2</sup>·h<sup>-1</sup>/81.6 %. The evaporation-rate/evaporation-efficiency of the evaporators were enhanced even more (up to 2.32 kg m<sup>-2</sup>·h<sup>-1</sup>/89.4 %) after depositing MnCoGe (MCG) alloy particles instead of NG on the evaporators. Thus, the evaporation rate of the evaporator made with MCG was enhanced 32 % with respect to the evaporator made only with the graphene coating. All the evaporators were subjected to 10 consecutive cycles of use and the maximum reduction in the evaporation rate was 6 %. Later, tap water was contaminated with 2,4-dichlorophenoxyacetic acid (2,4-DCP) herbicide (20 ppm). Next, this contaminated water was put in contact with the solar evaporator made with MCG alloy and it was completely decontaminated as confirmed by the UV-Vis spectra for the clean water. In general, adding the MCG alloy on the evaporators (previously coated with graphene), reduced the heat losses and the water enthalpy, which increased the evaporation rate of the water. The results of this investigation indicate that 3D graphene evaporators can be constructed on biodegradable fibers, which diminished the environmental impact of expired evaporators.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"380 ","pages":"125124"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.125124","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of solar evaporators to produce fresh water from seawater and from polluted water sources is a promising approach to palliate the global water shortage crisis. In this research, coconut/agave-fibers based 3D-sponges were used as biodegradable support to make solar evaporators. A graphene coating was deposited on the biodegradable sponges (FG evaporator) and was evaluated to desalinate seawater (from Puerto-Vallarta Beach, Mexico) under natural sunlight. This evaporator produced an evaporation-rate/evaporation-efficiency of 1.55 kg m-2·h-1/77.3 %. Next, a second evaporator was fabricated by depositing an extra layer of N-doped graphene (NG) on the graphene layer and this evaporator reached an evaporation-rate/evaporation-efficiency of 2.05 kg m-2·h-1/81.6 %. The evaporation-rate/evaporation-efficiency of the evaporators were enhanced even more (up to 2.32 kg m-2·h-1/89.4 %) after depositing MnCoGe (MCG) alloy particles instead of NG on the evaporators. Thus, the evaporation rate of the evaporator made with MCG was enhanced 32 % with respect to the evaporator made only with the graphene coating. All the evaporators were subjected to 10 consecutive cycles of use and the maximum reduction in the evaporation rate was 6 %. Later, tap water was contaminated with 2,4-dichlorophenoxyacetic acid (2,4-DCP) herbicide (20 ppm). Next, this contaminated water was put in contact with the solar evaporator made with MCG alloy and it was completely decontaminated as confirmed by the UV-Vis spectra for the clean water. In general, adding the MCG alloy on the evaporators (previously coated with graphene), reduced the heat losses and the water enthalpy, which increased the evaporation rate of the water. The results of this investigation indicate that 3D graphene evaporators can be constructed on biodegradable fibers, which diminished the environmental impact of expired evaporators.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信