Background: Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood.
Objective: The objective of this study was to determine tissue-specific and aging-dependent roles for VPS13A and BLTP2 using Drosophila models.
Methods: We generated tissue-specific knockdowns of the VPS13A ortholog (Vps13) and the BLTP2 ortholog (hobbit) in neurons and muscles of Drosophila. We analyzed age-dependent locomotor behavior, neurodegeneration, and synapse development and function.
Results: Neuron-specific loss of the VPS13A ortholog caused neurodegeneration followed by aging-dependent movement deficits and reduced lifespan, whereas muscle-specific loss affected only lifespan. In contrast, neuronal loss of the BLTP2 ortholog resulted in severe early-onset locomotor defects without neurodegeneration, whereas muscle loss impaired synaptogenesis and neurotransmission at the neuromuscular junction.
期刊介绍:
Movement Disorders publishes a variety of content types including Reviews, Viewpoints, Full Length Articles, Historical Reports, Brief Reports, and Letters. The journal considers original manuscripts on topics related to the diagnosis, therapeutics, pharmacology, biochemistry, physiology, etiology, genetics, and epidemiology of movement disorders. Appropriate topics include Parkinsonism, Chorea, Tremors, Dystonia, Myoclonus, Tics, Tardive Dyskinesia, Spasticity, and Ataxia.