TEMPO-Mediated Paired Electrosynthesis of Ethylene Glycol from Formaldehyde and Methanol at High Current Densities.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-03-28 DOI:10.1002/cssc.202500123
Tom Wirtanen, Valtteri Oksanen, Kiia Malinen, Tao Hu, Alexander Reznichenko
{"title":"TEMPO-Mediated Paired Electrosynthesis of Ethylene Glycol from Formaldehyde and Methanol at High Current Densities.","authors":"Tom Wirtanen, Valtteri Oksanen, Kiia Malinen, Tao Hu, Alexander Reznichenko","doi":"10.1002/cssc.202500123","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report a paired electrosynthesis of ethylene glycol from formaldehyde and methanol facilitated by TEMPO. The use of TEMPO accentuates formaldehyde production at the anode, providing additional formaldehyde for pinacol coupling at the cathode. The reaction is performed in water/methanol solution in a simple undivided cell using sulfuric acid treated graphite electrodes with industrially feasible current densities between 300 to 350 mA cm-2. Other components of the reaction are sodium chloride which is used as a supporting electrolyte and tributylmethylammonium chloride which raises the current efficiency. With a slight modification in the reaction temperature and current density, the outcome can be tuned from high current efficiency towards higher chemical yields. The conditions of the batch reaction were successfully transferred to a continuous flow-cell arrangement. Mechanistic studies indicate the involvement of hydroxymethyl radicals in the electrolysis.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500123"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500123","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report a paired electrosynthesis of ethylene glycol from formaldehyde and methanol facilitated by TEMPO. The use of TEMPO accentuates formaldehyde production at the anode, providing additional formaldehyde for pinacol coupling at the cathode. The reaction is performed in water/methanol solution in a simple undivided cell using sulfuric acid treated graphite electrodes with industrially feasible current densities between 300 to 350 mA cm-2. Other components of the reaction are sodium chloride which is used as a supporting electrolyte and tributylmethylammonium chloride which raises the current efficiency. With a slight modification in the reaction temperature and current density, the outcome can be tuned from high current efficiency towards higher chemical yields. The conditions of the batch reaction were successfully transferred to a continuous flow-cell arrangement. Mechanistic studies indicate the involvement of hydroxymethyl radicals in the electrolysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信