Manyu Xing, Shuang Liang, Wei Cao, Qulian Guo, Wangyuan Zou
{"title":"Annexin A3 Represses Endothelial Permeability and Inflammation During Sepsis via Actin Cytoskeleton Modulation.","authors":"Manyu Xing, Shuang Liang, Wei Cao, Qulian Guo, Wangyuan Zou","doi":"10.1002/advs.202416904","DOIUrl":null,"url":null,"abstract":"<p><p>Increased endothelial permeability and a dysregulated inflammatory response play key roles in organ damage in sepsis. The role of annexin A3 (ANXA3) in regulating endothelial permeability and inflammation during sepsis is explored using ANXA3 knockout mice and primary human umbilical vein endothelial cells (HUVECs). The absence of ANXA3 exacerbated sepsis outcomes, including increased mortality, lung injury, leukocyte infiltration, and vascular permeability. ANXA3 is highly expressed in endothelial cells and its loss results in the formation of cytoskeletal stress fibers and a decrease in the expression of the junction proteins zonula occludens (Zo)-1, vascular endothelial (VE)-cadherin, and claudin 5, leading to increase permeability. ANXA3 knockdown also upregulates E-selectin (CD62E) expression through the phosphorylation of activating transcription factor 2 (ATF2), which increases monocyte adhesion in HUVECs after LPS stimulation. Inhibiting actin polymerization reverse these effects. Thus, ANXA3 stabilizes the actin cytoskeleton, playing a protective role in endothelial dysfunction during sepsis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416904"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202416904","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Increased endothelial permeability and a dysregulated inflammatory response play key roles in organ damage in sepsis. The role of annexin A3 (ANXA3) in regulating endothelial permeability and inflammation during sepsis is explored using ANXA3 knockout mice and primary human umbilical vein endothelial cells (HUVECs). The absence of ANXA3 exacerbated sepsis outcomes, including increased mortality, lung injury, leukocyte infiltration, and vascular permeability. ANXA3 is highly expressed in endothelial cells and its loss results in the formation of cytoskeletal stress fibers and a decrease in the expression of the junction proteins zonula occludens (Zo)-1, vascular endothelial (VE)-cadherin, and claudin 5, leading to increase permeability. ANXA3 knockdown also upregulates E-selectin (CD62E) expression through the phosphorylation of activating transcription factor 2 (ATF2), which increases monocyte adhesion in HUVECs after LPS stimulation. Inhibiting actin polymerization reverse these effects. Thus, ANXA3 stabilizes the actin cytoskeleton, playing a protective role in endothelial dysfunction during sepsis.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.