Annexin A3 Represses Endothelial Permeability and Inflammation During Sepsis via Actin Cytoskeleton Modulation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Manyu Xing, Shuang Liang, Wei Cao, Qulian Guo, Wangyuan Zou
{"title":"Annexin A3 Represses Endothelial Permeability and Inflammation During Sepsis via Actin Cytoskeleton Modulation.","authors":"Manyu Xing, Shuang Liang, Wei Cao, Qulian Guo, Wangyuan Zou","doi":"10.1002/advs.202416904","DOIUrl":null,"url":null,"abstract":"<p><p>Increased endothelial permeability and a dysregulated inflammatory response play key roles in organ damage in sepsis. The role of annexin A3 (ANXA3) in regulating endothelial permeability and inflammation during sepsis is explored using ANXA3 knockout mice and primary human umbilical vein endothelial cells (HUVECs). The absence of ANXA3 exacerbated sepsis outcomes, including increased mortality, lung injury, leukocyte infiltration, and vascular permeability. ANXA3 is highly expressed in endothelial cells and its loss results in the formation of cytoskeletal stress fibers and a decrease in the expression of the junction proteins zonula occludens (Zo)-1, vascular endothelial (VE)-cadherin, and claudin 5, leading to increase permeability. ANXA3 knockdown also upregulates E-selectin (CD62E) expression through the phosphorylation of activating transcription factor 2 (ATF2), which increases monocyte adhesion in HUVECs after LPS stimulation. Inhibiting actin polymerization reverse these effects. Thus, ANXA3 stabilizes the actin cytoskeleton, playing a protective role in endothelial dysfunction during sepsis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416904"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202416904","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Increased endothelial permeability and a dysregulated inflammatory response play key roles in organ damage in sepsis. The role of annexin A3 (ANXA3) in regulating endothelial permeability and inflammation during sepsis is explored using ANXA3 knockout mice and primary human umbilical vein endothelial cells (HUVECs). The absence of ANXA3 exacerbated sepsis outcomes, including increased mortality, lung injury, leukocyte infiltration, and vascular permeability. ANXA3 is highly expressed in endothelial cells and its loss results in the formation of cytoskeletal stress fibers and a decrease in the expression of the junction proteins zonula occludens (Zo)-1, vascular endothelial (VE)-cadherin, and claudin 5, leading to increase permeability. ANXA3 knockdown also upregulates E-selectin (CD62E) expression through the phosphorylation of activating transcription factor 2 (ATF2), which increases monocyte adhesion in HUVECs after LPS stimulation. Inhibiting actin polymerization reverse these effects. Thus, ANXA3 stabilizes the actin cytoskeleton, playing a protective role in endothelial dysfunction during sepsis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信