Study on the Asymmetric Synthesis of Chiral 3,3,3-Trifluoro-2-Hydroxypropanoic Acids by Lactate Dehydrogenase.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-03-27 DOI:10.1002/cbic.202500047
Jingfei Wu, Aem Nuylert, Misako Iwaki, Shinsuke Miki, Yasuhisa Asano
{"title":"Study on the Asymmetric Synthesis of Chiral 3,3,3-Trifluoro-2-Hydroxypropanoic Acids by Lactate Dehydrogenase.","authors":"Jingfei Wu, Aem Nuylert, Misako Iwaki, Shinsuke Miki, Yasuhisa Asano","doi":"10.1002/cbic.202500047","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral 3,3,3-trifluoro-2-hydroxypropanoic acid (3,3,3-trifluorolactic acid, TFLA), which possesses two significant functional groups, is a versatile intermediate in pharmaceutical and material synthesis. A feasible strategy for producing both the enantiomers of chiral TFLAs involves reduction of the corresponding pyruvate using lactate dehydrogenases (LDHs). In this study, ldh genes encoding l-LDHs from animals and d/l-LDHs from lactic acid bacteria are cloned and all the recombinant LDHs are successfully expressed with a histidine tag in Escherichia coli BL21 (DE3). To achieve cofactor regeneration, a nicotinamide adenine dinucleotide regeneration system is constructed using formate dehydrogenase from Candida boidinii. Chiral TFLA is synthesized from 3,3,3-trifluoro-2-oxopropionic acid (trifluoropyruvic acid, TFPy) with good yields and excellent stereoselectivity, catalyzed by lactate dehydrogenases and formate dehydrogenase. Under optimized biocatalytic conditions, highly active d-LmLDH from Leuconostoc mesenteroides and chicken l-LDH from Gallus are screened for their ability to completely convert 0.5 m TFPy to produce optically pure (S)-TFLA and (R)-TFLA with enantiomeric excess >99.5% within 6 h, respectively. Molecular docking simulations investigate the catalytic mechanisms of selected d-LDH and l-LDH, revealing their activity and stereoselectivity toward CF<sub>3</sub>-containing TFPy.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500047"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500047","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral 3,3,3-trifluoro-2-hydroxypropanoic acid (3,3,3-trifluorolactic acid, TFLA), which possesses two significant functional groups, is a versatile intermediate in pharmaceutical and material synthesis. A feasible strategy for producing both the enantiomers of chiral TFLAs involves reduction of the corresponding pyruvate using lactate dehydrogenases (LDHs). In this study, ldh genes encoding l-LDHs from animals and d/l-LDHs from lactic acid bacteria are cloned and all the recombinant LDHs are successfully expressed with a histidine tag in Escherichia coli BL21 (DE3). To achieve cofactor regeneration, a nicotinamide adenine dinucleotide regeneration system is constructed using formate dehydrogenase from Candida boidinii. Chiral TFLA is synthesized from 3,3,3-trifluoro-2-oxopropionic acid (trifluoropyruvic acid, TFPy) with good yields and excellent stereoselectivity, catalyzed by lactate dehydrogenases and formate dehydrogenase. Under optimized biocatalytic conditions, highly active d-LmLDH from Leuconostoc mesenteroides and chicken l-LDH from Gallus are screened for their ability to completely convert 0.5 m TFPy to produce optically pure (S)-TFLA and (R)-TFLA with enantiomeric excess >99.5% within 6 h, respectively. Molecular docking simulations investigate the catalytic mechanisms of selected d-LDH and l-LDH, revealing their activity and stereoselectivity toward CF3-containing TFPy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信