Pyridine-Fused Bis(azacorrole)s: Easily Accessible NIR III Absorbing Cation Radicals and Biradicaloids of Antiaromatic Ground State.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sha Li, Shaowei Zhang, Xiaofang Li, Oskar Smaga, Kinga Szydełko, Miłosz Pawlicki, Piotr J Chmielewski
{"title":"Pyridine-Fused Bis(azacorrole)s: Easily Accessible NIR III Absorbing Cation Radicals and Biradicaloids of Antiaromatic Ground State.","authors":"Sha Li, Shaowei Zhang, Xiaofang Li, Oskar Smaga, Kinga Szydełko, Miłosz Pawlicki, Piotr J Chmielewski","doi":"10.1002/advs.202416223","DOIUrl":null,"url":null,"abstract":"<p><p>A family of pyridine-fused bis(porphyrinoids) is obtained, including constitutionally isomeric bis(azacorrole)s, azacorrole-oxacorrole, as well as azacorrole-norcorrole heterodimers by two distinct synthetic approaches. Spectroscopic characteristics, corroborated by Density Functional Theory (DFT) calculations, indicate aromaticity of the bis(azacorrole) as well as azacorrole-oxacorrole products, while for the azacorrole-norcorrole heterodimers, the presence of both dia- and paratropic currents is detected. Electrochemical analyses indicate facile chemical access to cation radicals and dicationic species that have been characterized by electronic and electron spin resonance spectroscopy as well as by DFT calculations. Monocations give rise to the relatively strong absorption bands in the near infra red (NIR) region between 2400 and 3200 nm, while dications are characterized by a series of absorptions between 1000 and 2200 nm. Electron spin resonance (ESR) experiments indicate the presence of singlet-triplet spin equilibria for the dications. For the dication of bis(azacorrole) of the most planar structure, the singlet ground state is established, and low temperature nuclear magnetic resonance (NMR) as well as gauge-independent atomic orbital NMR calculations indicate its antiaromatic character.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416223"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202416223","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A family of pyridine-fused bis(porphyrinoids) is obtained, including constitutionally isomeric bis(azacorrole)s, azacorrole-oxacorrole, as well as azacorrole-norcorrole heterodimers by two distinct synthetic approaches. Spectroscopic characteristics, corroborated by Density Functional Theory (DFT) calculations, indicate aromaticity of the bis(azacorrole) as well as azacorrole-oxacorrole products, while for the azacorrole-norcorrole heterodimers, the presence of both dia- and paratropic currents is detected. Electrochemical analyses indicate facile chemical access to cation radicals and dicationic species that have been characterized by electronic and electron spin resonance spectroscopy as well as by DFT calculations. Monocations give rise to the relatively strong absorption bands in the near infra red (NIR) region between 2400 and 3200 nm, while dications are characterized by a series of absorptions between 1000 and 2200 nm. Electron spin resonance (ESR) experiments indicate the presence of singlet-triplet spin equilibria for the dications. For the dication of bis(azacorrole) of the most planar structure, the singlet ground state is established, and low temperature nuclear magnetic resonance (NMR) as well as gauge-independent atomic orbital NMR calculations indicate its antiaromatic character.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信