{"title":"Controlling the Local Conformation of RNA G-Quadruplex Results in Reduced RNA/Peptide Cytotoxic Accumulation Associated with C9orf72 ALS/FTD.","authors":"Saki Matsumoto, Hisae Tateishi-Karimata, Tatsuya Ohyama, Naoki Sugimoto","doi":"10.1002/smtd.202401630","DOIUrl":null,"url":null,"abstract":"<p><p>Repeat expansion of d(G<sub>4</sub>C<sub>2</sub>) in the noncoding region of the C9orf72 gene contributes to neurodegenerative diseases. The repeat expansion transcript r(G<sub>4</sub>C<sub>2</sub>) induces RNA/peptide accumulation, which, in turn, induces cytotoxicity and accelerates the development of neurodegenerative diseases. Such cytotoxic accumulation is triggered by peptide aggregation. Here, a technique is developed to prevent accumulation by regulating RNA interactions, assuming that RNA structure is important for peptide interactions. A screening method is used to identify compounds that suppress RNA accumulation of r(G<sub>4</sub>C<sub>2</sub>) repeats. The four compounds are identified with wide π-planes containing hydroxyl, methoxy, and cyclic ether groups that suppressed RNA accumulation. Interestingly, these compounds also suppressed RNA/peptide accumulation in neuroblastoma cells, indicating that RNA accumulation is a key regulator of RNA/peptide cytotoxic aggregate formation. In vitro and in silico physicochemical analyses reveal that these compounds bind to the loop region of the G-quadruplex via hydrogen bonds or CH-π interactions, resulting in an altered loop conformation. Importantly, these conformational changes inhibited RNA G-quadruplex associations. These results show that conformational changes are promising for controlling the interactions between G-quadruplexes and further RNA accumulation. These findings may be useful in the development of therapeutic strategies for the treatment of neurodegenerative diseases.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401630"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401630","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Repeat expansion of d(G4C2) in the noncoding region of the C9orf72 gene contributes to neurodegenerative diseases. The repeat expansion transcript r(G4C2) induces RNA/peptide accumulation, which, in turn, induces cytotoxicity and accelerates the development of neurodegenerative diseases. Such cytotoxic accumulation is triggered by peptide aggregation. Here, a technique is developed to prevent accumulation by regulating RNA interactions, assuming that RNA structure is important for peptide interactions. A screening method is used to identify compounds that suppress RNA accumulation of r(G4C2) repeats. The four compounds are identified with wide π-planes containing hydroxyl, methoxy, and cyclic ether groups that suppressed RNA accumulation. Interestingly, these compounds also suppressed RNA/peptide accumulation in neuroblastoma cells, indicating that RNA accumulation is a key regulator of RNA/peptide cytotoxic aggregate formation. In vitro and in silico physicochemical analyses reveal that these compounds bind to the loop region of the G-quadruplex via hydrogen bonds or CH-π interactions, resulting in an altered loop conformation. Importantly, these conformational changes inhibited RNA G-quadruplex associations. These results show that conformational changes are promising for controlling the interactions between G-quadruplexes and further RNA accumulation. These findings may be useful in the development of therapeutic strategies for the treatment of neurodegenerative diseases.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.