Comprehensive Insights into Exciplex Behavior in Nonpolar Media: Revisiting Weller's Framework with Molecular Conformation.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Suhyun Park, Ena Yun, Jong-Won Song, Hohjai Lee
{"title":"Comprehensive Insights into Exciplex Behavior in Nonpolar Media: Revisiting Weller's Framework with Molecular Conformation.","authors":"Suhyun Park, Ena Yun, Jong-Won Song, Hohjai Lee","doi":"10.1021/acs.jpca.5c01445","DOIUrl":null,"url":null,"abstract":"<p><p>Exciplexes are pivotal in organic light-emitting diodes and photovoltaics. However, their formation and emission in nonpolar solvents remain unclear. Revisiting Weller's works on photoinduced electron transfer (PET) rates and exciplex emission based on electrochemical redox potentials, we investigate exciplex behavior in cyclohexane using anthracene (Ant) as an acceptor and <i>N</i>,<i>N</i>-dimethylaniline (DMA) derivatives as donors. Employing steady-state and time-resolved spectroscopy, electrochemistry, and density functional theory (DFT) calculations, we demonstrate that electrochemical redox potentials alone inadequately explain the exciplex behavior in nonpolar environments. Our DFT analysis reveals that the C-N rotational angle of the dimethylamine group of a donor influences the highest occupied molecular orbital (HOMO) energy levels, affecting quenching processes. Furthermore, time-dependent DFT simulations accurately reproduce experimental exciplex emission spectra, linking emission intensity to donor contribution in the exciplex HOMO. These findings deepen the understanding of exciplex behavior in nonpolar media and provide insights for designing and interpreting exciplex-based optoelectronic materials.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c01445","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exciplexes are pivotal in organic light-emitting diodes and photovoltaics. However, their formation and emission in nonpolar solvents remain unclear. Revisiting Weller's works on photoinduced electron transfer (PET) rates and exciplex emission based on electrochemical redox potentials, we investigate exciplex behavior in cyclohexane using anthracene (Ant) as an acceptor and N,N-dimethylaniline (DMA) derivatives as donors. Employing steady-state and time-resolved spectroscopy, electrochemistry, and density functional theory (DFT) calculations, we demonstrate that electrochemical redox potentials alone inadequately explain the exciplex behavior in nonpolar environments. Our DFT analysis reveals that the C-N rotational angle of the dimethylamine group of a donor influences the highest occupied molecular orbital (HOMO) energy levels, affecting quenching processes. Furthermore, time-dependent DFT simulations accurately reproduce experimental exciplex emission spectra, linking emission intensity to donor contribution in the exciplex HOMO. These findings deepen the understanding of exciplex behavior in nonpolar media and provide insights for designing and interpreting exciplex-based optoelectronic materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信