{"title":"Activity-Induced Droplet Inversion in Multicomponent Liquid-Liquid Phase Separation.","authors":"Xianyun Jiang, Zhonghuai Hou","doi":"10.1021/acs.jctc.5c00162","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-liquid phase separation (LLPS) is a vital process in forming membrane-free organelles, crucial for cell physiology and recently gaining significant attention. However, the effects of nonequilibrium factors, which are common in real life, on the process of LLPS have not been fully explored. To address this issue, we developed a model for nonequilibrium phase separation involving three components (A, B, and C) by integrating a nonequilibrium term into the chemical potential for active component B. We find significant changes in the morphology and dynamics of nonequilibrium phase-separated droplets compared to their equilibrium counterparts. Remarkably, with a large enough activity, the B-A-C structure (B at the center, surrounded by A, then enveloped by C) under equilibrium conditions may change to a C-A-B structure. Further simulations give a global picture of the system under both active and passive conditions, revealing the shifts of the phase boundaries and unraveling the effect of activity on different droplet structures. We derived an effective free energy for the active LLPS system to provide a qualitative understanding of our observations. Our study presents a basic model for nonequilibrium phase separation processes, providing crucial insights into LLPS alongside intracellular nonequilibrium phenomena.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid-liquid phase separation (LLPS) is a vital process in forming membrane-free organelles, crucial for cell physiology and recently gaining significant attention. However, the effects of nonequilibrium factors, which are common in real life, on the process of LLPS have not been fully explored. To address this issue, we developed a model for nonequilibrium phase separation involving three components (A, B, and C) by integrating a nonequilibrium term into the chemical potential for active component B. We find significant changes in the morphology and dynamics of nonequilibrium phase-separated droplets compared to their equilibrium counterparts. Remarkably, with a large enough activity, the B-A-C structure (B at the center, surrounded by A, then enveloped by C) under equilibrium conditions may change to a C-A-B structure. Further simulations give a global picture of the system under both active and passive conditions, revealing the shifts of the phase boundaries and unraveling the effect of activity on different droplet structures. We derived an effective free energy for the active LLPS system to provide a qualitative understanding of our observations. Our study presents a basic model for nonequilibrium phase separation processes, providing crucial insights into LLPS alongside intracellular nonequilibrium phenomena.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.