Accurate and Rapid Prediction of Protein pKa: Protein Language Models Reveal the Sequence-pKa Relationship.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Shijie Xu, Akira Onoda
{"title":"Accurate and Rapid Prediction of Protein p<i>K</i><sub>a</sub>: Protein Language Models Reveal the Sequence-p<i>K</i><sub>a</sub> Relationship.","authors":"Shijie Xu, Akira Onoda","doi":"10.1021/acs.jctc.4c01288","DOIUrl":null,"url":null,"abstract":"<p><p>Protein p<i>K</i><sub>a</sub> prediction is a key challenge in computational biology. In this study, we present pKALM, a novel deep learning-based method for high-throughput protein p<i>K</i><sub>a</sub> prediction. pKALM uses a protein language model (PLM) to capture the complex sequence-structure relationships of proteins. While traditionally considered a structure-based problem, our results show that a PLM pretrained on large-scale protein sequence databases can effectively learn this relationship and achieve state-of-the-art performance. pKALM accurately predicts the p<i>K</i><sub>a</sub> values of six residues (Asp, Glu, His, Lys, Cys, and Tyr) and two termini with high precision and efficiency. It performs well at predicting both exposed and buried residues, which often deviate from standard p<i>K</i><sub>a</sub> values measured in the solvent. We demonstrate a novel finding that predicted protein isoelectric points (pI) can be used to improve the accuracy of p<i>K</i><sub>a</sub> prediction. High-throughput p<i>K</i><sub>a</sub> prediction of the human proteome using pKALM achieves a speed of 4,965 p<i>K</i><sub>a</sub> predictions per second, which is several orders of magnitude faster than existing state-of-the-art methods. The case studies illustrate the efficacy of pKALM in estimating p<i>K</i><sub>a</sub> values and the constraints of the method. pKALM will thus be a valuable tool for researchers in the fields of biochemistry, biophysics, and drug design.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01288","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Protein pKa prediction is a key challenge in computational biology. In this study, we present pKALM, a novel deep learning-based method for high-throughput protein pKa prediction. pKALM uses a protein language model (PLM) to capture the complex sequence-structure relationships of proteins. While traditionally considered a structure-based problem, our results show that a PLM pretrained on large-scale protein sequence databases can effectively learn this relationship and achieve state-of-the-art performance. pKALM accurately predicts the pKa values of six residues (Asp, Glu, His, Lys, Cys, and Tyr) and two termini with high precision and efficiency. It performs well at predicting both exposed and buried residues, which often deviate from standard pKa values measured in the solvent. We demonstrate a novel finding that predicted protein isoelectric points (pI) can be used to improve the accuracy of pKa prediction. High-throughput pKa prediction of the human proteome using pKALM achieves a speed of 4,965 pKa predictions per second, which is several orders of magnitude faster than existing state-of-the-art methods. The case studies illustrate the efficacy of pKALM in estimating pKa values and the constraints of the method. pKALM will thus be a valuable tool for researchers in the fields of biochemistry, biophysics, and drug design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信