Strong Damping-Like Torques in Wafer-Scale MoTe2 Grown by MOCVD.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Stasiu T Chyczewski, Hanwool Lee, Shuchen Li, Marwan Eladl, Jun-Fei Zheng, Axel Hoffmann, Wenjuan Zhu
{"title":"Strong Damping-Like Torques in Wafer-Scale MoTe<sub><b>2</b></sub> Grown by MOCVD.","authors":"Stasiu T Chyczewski, Hanwool Lee, Shuchen Li, Marwan Eladl, Jun-Fei Zheng, Axel Hoffmann, Wenjuan Zhu","doi":"10.1021/acsami.4c21247","DOIUrl":null,"url":null,"abstract":"<p><p>The scalable synthesis of materials with strong spin orbit coupling (SOC) is crucial for the development of spintronic and magnetic devices. Here, wafer-scale growth of 1T' MoTe<sub>2</sub> using metal-organic chemical vapor deposition (MOCVD) at low temperatures (400 °C) is demonstrated. The synthesized films exhibit uniform coverage across the entire substrate, as well as accurate stoichiometry. This low-temperature synthesis is compatible with silicon back-end-of-line (BEOL) processes, enabling in-memory and in-sensor computing for data-intensive applications. Furthermore, it was found that the grown 1T' MoTe<sub>2</sub> exhibits strong spin-orbit coupling, as revealed by the spin torque ferromagnetic resonance (ST-FMR) measurements conducted on a 1T' MoTe<sub>2</sub>/permalloy bilayer. These measurements indicate significant damping-like torques in the wafer-scale 1T' MoTe<sub>2</sub> film and indicate high spin-charge conversion efficiency. The BEOL-compatible process and potent spin orbit torque demonstrate the promise of MOCVD-grown MoTe<sub>2</sub> in advanced device applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21247","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The scalable synthesis of materials with strong spin orbit coupling (SOC) is crucial for the development of spintronic and magnetic devices. Here, wafer-scale growth of 1T' MoTe2 using metal-organic chemical vapor deposition (MOCVD) at low temperatures (400 °C) is demonstrated. The synthesized films exhibit uniform coverage across the entire substrate, as well as accurate stoichiometry. This low-temperature synthesis is compatible with silicon back-end-of-line (BEOL) processes, enabling in-memory and in-sensor computing for data-intensive applications. Furthermore, it was found that the grown 1T' MoTe2 exhibits strong spin-orbit coupling, as revealed by the spin torque ferromagnetic resonance (ST-FMR) measurements conducted on a 1T' MoTe2/permalloy bilayer. These measurements indicate significant damping-like torques in the wafer-scale 1T' MoTe2 film and indicate high spin-charge conversion efficiency. The BEOL-compatible process and potent spin orbit torque demonstrate the promise of MOCVD-grown MoTe2 in advanced device applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信