Multifunctional biomimetic liposomal nucleic acid scavengers inhibit the growth and metastasis of breast cancer.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Yuhang Miao, Kaizhen Wang, Xin Liu, Xin Wang, Yanwei Hu, Zhenwei Yuan, Dawei Deng
{"title":"Multifunctional biomimetic liposomal nucleic acid scavengers inhibit the growth and metastasis of breast cancer.","authors":"Yuhang Miao, Kaizhen Wang, Xin Liu, Xin Wang, Yanwei Hu, Zhenwei Yuan, Dawei Deng","doi":"10.1039/d4bm01721h","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy and surgery, though effective in cancer treatment, trigger the release of nucleic acid-containing pro-inflammatory compounds from damaged tumor cells, known as nucleic acid-associated damage-associated molecular patterns (NA-DAMPs). This inflammation promotes tumor metastasis, and currently, no effective treatment exists for this treatment-induced inflammation and subsequent tumor metastasis. To address this challenge, we developed a biomimetic liposome complex (Lipo-Rh<sub>2</sub>) incorporating a hybrid structure of liposomes and dendritic polymers, mimicking cell membrane morphology. Lipo-Rh<sub>2</sub> leverages the multivalent surface properties of dendritic polymers to clear cell-free nucleic acids while serving as both a structural stabilizer and targeting ligand <i>via</i> embedded ginsenoside Rh<sub>2</sub>. Experimental data show that Lipo-Rh<sub>2</sub> effectively reduces free nucleic acids in mouse serum through charge interactions, downregulates Toll-like receptor expression, decreases inflammatory cytokine secretion, and inhibits both primary tumor growth and metastasis. Compared to the current nucleic acid scavenger PAMAM-G3, Lipo-Rh<sub>2</sub> demonstrates stronger antitumor effects, lower toxicity, and enhanced targeting capabilities. This biomimetic liposome-based nucleic acid scavenger represents a novel approach to nucleic acid clearance, expanding the framework for designing effective therapeutic agents.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01721h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy and surgery, though effective in cancer treatment, trigger the release of nucleic acid-containing pro-inflammatory compounds from damaged tumor cells, known as nucleic acid-associated damage-associated molecular patterns (NA-DAMPs). This inflammation promotes tumor metastasis, and currently, no effective treatment exists for this treatment-induced inflammation and subsequent tumor metastasis. To address this challenge, we developed a biomimetic liposome complex (Lipo-Rh2) incorporating a hybrid structure of liposomes and dendritic polymers, mimicking cell membrane morphology. Lipo-Rh2 leverages the multivalent surface properties of dendritic polymers to clear cell-free nucleic acids while serving as both a structural stabilizer and targeting ligand via embedded ginsenoside Rh2. Experimental data show that Lipo-Rh2 effectively reduces free nucleic acids in mouse serum through charge interactions, downregulates Toll-like receptor expression, decreases inflammatory cytokine secretion, and inhibits both primary tumor growth and metastasis. Compared to the current nucleic acid scavenger PAMAM-G3, Lipo-Rh2 demonstrates stronger antitumor effects, lower toxicity, and enhanced targeting capabilities. This biomimetic liposome-based nucleic acid scavenger represents a novel approach to nucleic acid clearance, expanding the framework for designing effective therapeutic agents.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信