{"title":"Down-regulation of ATP8B2 in Foam Cells Inhibits Autophagic Flux and ox-LDL Degradation in Atherosclerosis.","authors":"Xiaodong Miao, Rui Pan, Fei Chang","doi":"10.1007/s12013-025-01728-z","DOIUrl":null,"url":null,"abstract":"<p><p>Our study aims to screen and explore the potential molecular mechanisms of atherosclerosis using a comprehensive research approach combining bioinformatics analysis and molecular biology experiments. Bioinformatics analyses were conducted to screen for key genes with significantly differential expression in atherosclerosis. Subsequently, macrophages and foam cells induced from THP-1 cells were utilized to validate the function of these key genes through siRNA knockdown. Molecular biology experiments encompassed reverse transcription polymerase chain reaction (RT-PCR), Western Blotting, immunofluorescence staining, and JC-1 probe detection of mitochondrial membrane potential. ATP8B2, encoding a P4-ATPase, was significantly downregulated in both plaque tissues and circulating macrophages of atherosclerosis patients. This enzyme influences membrane fusion and other dynamic processes by affecting the asymmetric distribution of phospholipids within the bilayer. Knockdown of ATP8B2 expression significantly inhibited autophagic flux in macrophages, manifested by abnormal accumulation of LC3-II and p62 protein levels. Furthermore, downregulation of ATP8B2 expression significantly inhibited the degradation of oxidized low-density lipoprotein (ox-LDL) by macrophages. Simultaneously, reduced ATP8B2 expression led to decreased mitochondrial membrane potential and mitochondrial dysfunction. Our study unveils for the first time the crucial role of ATP8B2 in atherosclerosis, particularly in maintaining autophagic flux, promoting ox-LDL degradation, and sustaining mitochondrial homeostasis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01728-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our study aims to screen and explore the potential molecular mechanisms of atherosclerosis using a comprehensive research approach combining bioinformatics analysis and molecular biology experiments. Bioinformatics analyses were conducted to screen for key genes with significantly differential expression in atherosclerosis. Subsequently, macrophages and foam cells induced from THP-1 cells were utilized to validate the function of these key genes through siRNA knockdown. Molecular biology experiments encompassed reverse transcription polymerase chain reaction (RT-PCR), Western Blotting, immunofluorescence staining, and JC-1 probe detection of mitochondrial membrane potential. ATP8B2, encoding a P4-ATPase, was significantly downregulated in both plaque tissues and circulating macrophages of atherosclerosis patients. This enzyme influences membrane fusion and other dynamic processes by affecting the asymmetric distribution of phospholipids within the bilayer. Knockdown of ATP8B2 expression significantly inhibited autophagic flux in macrophages, manifested by abnormal accumulation of LC3-II and p62 protein levels. Furthermore, downregulation of ATP8B2 expression significantly inhibited the degradation of oxidized low-density lipoprotein (ox-LDL) by macrophages. Simultaneously, reduced ATP8B2 expression led to decreased mitochondrial membrane potential and mitochondrial dysfunction. Our study unveils for the first time the crucial role of ATP8B2 in atherosclerosis, particularly in maintaining autophagic flux, promoting ox-LDL degradation, and sustaining mitochondrial homeostasis.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.