Quantum Chemical Study on the Evolution of Sulfur Functional Groups during Char Burnout.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Bastian Schnieder, Rochus Schmid, Christof Hättig
{"title":"Quantum Chemical Study on the Evolution of Sulfur Functional Groups during Char Burnout.","authors":"Bastian Schnieder, Rochus Schmid, Christof Hättig","doi":"10.1021/acs.jpca.4c07973","DOIUrl":null,"url":null,"abstract":"<p><p>The oxy-fuel combustion of biochar connected with carbon capture, storage, and utilization technologies is an environmentally beneficial alternative for the replacement of fossil fuels. Biochar itself consists of porously stacked layers of hydrocarbons containing several heteroatoms, such as oxygen, nitrogen, and sulfur. At present, only limited information on the combustion mechanisms for oxygen and nitrogen functionalities is available in the literature; specific information on the combustion mechanisms of sulfur-containing groups (SFGs) is lacking. In this study, we present electronic structure calculations to uncover the mechanisms of the initial oxidation reactions of SFGs. Furthermore, it is examined if the reaction mechanisms remain similar or change with increasing system size. For this purpose, we apply an automatized workflow combining reactive molecular dynamics simulations with static electronic structure calculations at different levels of theory. The results show that terminal groups such as thiols, sulfonic acids, thioketones, and <i>S</i>,<i>S</i>-dioxides follow similar reaction pathways. These SFGs are all gradually oxidized before they eventually are eliminated as SO<sub><i>x</i></sub>(H<sub><i>y</i></sub>) species from the carbon framework. Embedded thiophenes follow somewhat different reaction pathways that lead to the elimination of HOS· radicals or carbonyl sulfide (COS), depending on the system size. For the found oxidation channels, we report reaction and activation energies and rate constants that can be used to improve comprehensive kinetic models for the combustion of sulfur-containing biochar as a biomass-based renewable energy source.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07973","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxy-fuel combustion of biochar connected with carbon capture, storage, and utilization technologies is an environmentally beneficial alternative for the replacement of fossil fuels. Biochar itself consists of porously stacked layers of hydrocarbons containing several heteroatoms, such as oxygen, nitrogen, and sulfur. At present, only limited information on the combustion mechanisms for oxygen and nitrogen functionalities is available in the literature; specific information on the combustion mechanisms of sulfur-containing groups (SFGs) is lacking. In this study, we present electronic structure calculations to uncover the mechanisms of the initial oxidation reactions of SFGs. Furthermore, it is examined if the reaction mechanisms remain similar or change with increasing system size. For this purpose, we apply an automatized workflow combining reactive molecular dynamics simulations with static electronic structure calculations at different levels of theory. The results show that terminal groups such as thiols, sulfonic acids, thioketones, and S,S-dioxides follow similar reaction pathways. These SFGs are all gradually oxidized before they eventually are eliminated as SOx(Hy) species from the carbon framework. Embedded thiophenes follow somewhat different reaction pathways that lead to the elimination of HOS· radicals or carbonyl sulfide (COS), depending on the system size. For the found oxidation channels, we report reaction and activation energies and rate constants that can be used to improve comprehensive kinetic models for the combustion of sulfur-containing biochar as a biomass-based renewable energy source.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信