A Novel Method for Achieving Precision and Reproducibility in a 1.8 GHz Radiofrequency Exposure System That Modulates Intracellular ROS as a Function of Signal Amplitude in Human Cell Cultures.
Cyril Dahon, Blanche Aguida, Yoann Lebon, Pierre Le Guen, Art Dangremont, Olivier Meyer, Jean-Marie Citerne, Marootpong Pooam, Haider Raad, Thawatchai Thoradit, Nathalie Jourdan, Federico Bertagna, Margaret Ahmad
{"title":"A Novel Method for Achieving Precision and Reproducibility in a 1.8 GHz Radiofrequency Exposure System That Modulates Intracellular ROS as a Function of Signal Amplitude in Human Cell Cultures.","authors":"Cyril Dahon, Blanche Aguida, Yoann Lebon, Pierre Le Guen, Art Dangremont, Olivier Meyer, Jean-Marie Citerne, Marootpong Pooam, Haider Raad, Thawatchai Thoradit, Nathalie Jourdan, Federico Bertagna, Margaret Ahmad","doi":"10.3390/bioengineering12030257","DOIUrl":null,"url":null,"abstract":"<p><p>Radiofrequency fields in the 1-28 GHz range are ubiquitous in the modern world, giving rise to numerous studies of potential health risks such as cancer, neurological conditions, reproductive risks and electromagnetic hypersensitivity. However, results are inconsistent due to a lack of precision in exposure conditions and vastly differing experimental models, whereas measured RF effects are often indirect and occur over many hours or even days. Here, we present a simplified RF exposure protocol providing a single 1.8 GHz carrier frequency to human HEK293 cell monolayer cultures. A custom-built exposure box and antenna maintained in a fully shielded anechoic chamber emits discrete RF signals which can be precisely characterized and modelled. The chosen amplitudes are non-thermal and fall within the range of modern telecommunication devices. A critical feature of the protocol is that cell cultures are exposed to only a single, short (15 min) RF exposure period, followed by detection of immediate, rapid changes in gene expression. In this way, we show that modulation of genes implicated in oxidative stress and ROS signaling is among the earliest cellular responses to RF exposure. Moreover, these genes respond in complex ways to varying RF signal amplitudes consistent with a hormetic, receptor-driven biological mechanism. We conclude that induction of mild cellular stress and reactive oxygen species (ROS) is a primary response of human cells to RF signals, and that these responses occur at RF signal amplitudes within the range of normal telecommunications devices. We suggest that this method may help provide a guideline for greater reliability and reproducibility of research results between labs, and thereby help resolve existing controversy on underlying mechanisms and outcomes of RF exposure in the general population.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Radiofrequency fields in the 1-28 GHz range are ubiquitous in the modern world, giving rise to numerous studies of potential health risks such as cancer, neurological conditions, reproductive risks and electromagnetic hypersensitivity. However, results are inconsistent due to a lack of precision in exposure conditions and vastly differing experimental models, whereas measured RF effects are often indirect and occur over many hours or even days. Here, we present a simplified RF exposure protocol providing a single 1.8 GHz carrier frequency to human HEK293 cell monolayer cultures. A custom-built exposure box and antenna maintained in a fully shielded anechoic chamber emits discrete RF signals which can be precisely characterized and modelled. The chosen amplitudes are non-thermal and fall within the range of modern telecommunication devices. A critical feature of the protocol is that cell cultures are exposed to only a single, short (15 min) RF exposure period, followed by detection of immediate, rapid changes in gene expression. In this way, we show that modulation of genes implicated in oxidative stress and ROS signaling is among the earliest cellular responses to RF exposure. Moreover, these genes respond in complex ways to varying RF signal amplitudes consistent with a hormetic, receptor-driven biological mechanism. We conclude that induction of mild cellular stress and reactive oxygen species (ROS) is a primary response of human cells to RF signals, and that these responses occur at RF signal amplitudes within the range of normal telecommunications devices. We suggest that this method may help provide a guideline for greater reliability and reproducibility of research results between labs, and thereby help resolve existing controversy on underlying mechanisms and outcomes of RF exposure in the general population.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering