{"title":"β-Cyclodextrin Encapsulated Platinum(II)-Based Nanoparticles: Photodynamic Therapy and Inhibition of the NF-κB Signaling Pathway in Glioblastoma.","authors":"Sakira Tabassum Borah, Anushka Mondal, Bishnu Das, Sanchari Saha, Jayasri Das Sarma, Parna Gupta","doi":"10.1021/acsabm.5c00103","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores cell death through photodynamic therapy (PDT) with β-cyclodextrin-encapsulated platinum(II)-based nanoparticles (<b>Pt-NPs</b>) and the effect on the NF-κB and stress pathways in glioblastoma. The encapsulation of the cyclometalated Pt(II) complex <b>Pt(LL')</b> within β-cyclodextrin (β-CD) enhances its biocompatibility, improves cellular penetration, and boosts emission, thereby increasing the effectiveness of PDT. Both <b>Pt(LL')</b> and <b>Pt-NPs</b> show minimal toxicity in the dark; however, <b>Pt-NPs</b> significantly increase toxicity toward glioblastoma Kr158 cells upon irradiation at 390 nm. The PDT-induced cell death is further validated through apoptosis assays and the modulation of some key survival pathways like NF-κB/p65, DJ-1, and ERp29. This is the first report of β-cyclodextrin-encapsulated platinum(II)-based nanoparticles designed to target glioblastoma cells through PDT, offering a promising strategy for enhancing therapeutic efficacy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores cell death through photodynamic therapy (PDT) with β-cyclodextrin-encapsulated platinum(II)-based nanoparticles (Pt-NPs) and the effect on the NF-κB and stress pathways in glioblastoma. The encapsulation of the cyclometalated Pt(II) complex Pt(LL') within β-cyclodextrin (β-CD) enhances its biocompatibility, improves cellular penetration, and boosts emission, thereby increasing the effectiveness of PDT. Both Pt(LL') and Pt-NPs show minimal toxicity in the dark; however, Pt-NPs significantly increase toxicity toward glioblastoma Kr158 cells upon irradiation at 390 nm. The PDT-induced cell death is further validated through apoptosis assays and the modulation of some key survival pathways like NF-κB/p65, DJ-1, and ERp29. This is the first report of β-cyclodextrin-encapsulated platinum(II)-based nanoparticles designed to target glioblastoma cells through PDT, offering a promising strategy for enhancing therapeutic efficacy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.