Preemptive optimization of a clinical antibody for broad neutralization of SARS-CoV-2 variants and robustness against viral escape

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fangqiang Zhu, Saravanan Rajan, Conor F. Hayes, Ka Yin Kwong, Andre R. Goncalves, Adam T. Zemla, Edmond Y. Lau, Yi Zhang, Yingyun Cai, John W. Goforth, Mikel Landajuela, Pavlo Gilchuk, Michael Kierny, Andrew Dippel, Bismark Amofah, Gilad Kaplan, Vanessa Cadevilla Peano, Christopher Morehouse, Ben Sparklin, Vancheswaran Gopalakrishnan, Kevin M. Tuffy, Amy Nguyen, Jagadish Beloor, Gustavo Kijak, Chang Liu, Aiste Dijokaite-Guraliuc, Juthathip Mongkolsapaya, Gavin R. Screaton, Brenden K. Petersen, Thomas A. Desautels, Drew Bennett, Simone Conti, Brent W. Segelke, Kathryn T. Arrildt, Samantha Kaul, Emilia A. Grzesiak, Felipe Leno da Silva, Thomas W. Bates, Christopher G. Earnhart, Svetlana Hopkins, Shivshankar Sundaram, Mark T. Esser, Joseph R. Francica, Daniel M. Faissol, LLNL Generative Unconstrained Intelligent Drug Engineering (GUIDE) consortium
{"title":"Preemptive optimization of a clinical antibody for broad neutralization of SARS-CoV-2 variants and robustness against viral escape","authors":"Fangqiang Zhu,&nbsp;Saravanan Rajan,&nbsp;Conor F. Hayes,&nbsp;Ka Yin Kwong,&nbsp;Andre R. Goncalves,&nbsp;Adam T. Zemla,&nbsp;Edmond Y. Lau,&nbsp;Yi Zhang,&nbsp;Yingyun Cai,&nbsp;John W. Goforth,&nbsp;Mikel Landajuela,&nbsp;Pavlo Gilchuk,&nbsp;Michael Kierny,&nbsp;Andrew Dippel,&nbsp;Bismark Amofah,&nbsp;Gilad Kaplan,&nbsp;Vanessa Cadevilla Peano,&nbsp;Christopher Morehouse,&nbsp;Ben Sparklin,&nbsp;Vancheswaran Gopalakrishnan,&nbsp;Kevin M. Tuffy,&nbsp;Amy Nguyen,&nbsp;Jagadish Beloor,&nbsp;Gustavo Kijak,&nbsp;Chang Liu,&nbsp;Aiste Dijokaite-Guraliuc,&nbsp;Juthathip Mongkolsapaya,&nbsp;Gavin R. Screaton,&nbsp;Brenden K. Petersen,&nbsp;Thomas A. Desautels,&nbsp;Drew Bennett,&nbsp;Simone Conti,&nbsp;Brent W. Segelke,&nbsp;Kathryn T. Arrildt,&nbsp;Samantha Kaul,&nbsp;Emilia A. Grzesiak,&nbsp;Felipe Leno da Silva,&nbsp;Thomas W. Bates,&nbsp;Christopher G. Earnhart,&nbsp;Svetlana Hopkins,&nbsp;Shivshankar Sundaram,&nbsp;Mark T. Esser,&nbsp;Joseph R. Francica,&nbsp;Daniel M. Faissol,&nbsp;LLNL Generative Unconstrained Intelligent Drug Engineering (GUIDE) consortium","doi":"10.1126/sciadv.adu0718","DOIUrl":null,"url":null,"abstract":"<div >Most previously authorized clinical antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have lost neutralizing activity to recent variants due to rapid viral evolution. To mitigate such escape, we preemptively enhance AZD3152, an antibody authorized for prophylaxis in immunocompromised individuals. Using deep mutational scanning (DMS) on the SARS-CoV-2 antigen, we identify AZD3152 vulnerabilities at antigen positions F456 and D420. Through two iterations of computational antibody design that integrates structure-based modeling, machine-learning, and experimental validation, we co-optimize AZD3152 against 24 contemporary and previous SARS-CoV-2 variants, as well as 20 potential future escape variants. Our top candidate, 3152-1142, restores full potency (100-fold improvement) against the more recently emerged XBB.1.5+F456L variant that escaped AZD3152, maintains potency against previous variants of concern, and shows no additional vulnerability as assessed by DMS. This preemptive mitigation demonstrates a generalizable approach for optimizing existing antibodies against potential future viral escape.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu0718","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu0718","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Most previously authorized clinical antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have lost neutralizing activity to recent variants due to rapid viral evolution. To mitigate such escape, we preemptively enhance AZD3152, an antibody authorized for prophylaxis in immunocompromised individuals. Using deep mutational scanning (DMS) on the SARS-CoV-2 antigen, we identify AZD3152 vulnerabilities at antigen positions F456 and D420. Through two iterations of computational antibody design that integrates structure-based modeling, machine-learning, and experimental validation, we co-optimize AZD3152 against 24 contemporary and previous SARS-CoV-2 variants, as well as 20 potential future escape variants. Our top candidate, 3152-1142, restores full potency (100-fold improvement) against the more recently emerged XBB.1.5+F456L variant that escaped AZD3152, maintains potency against previous variants of concern, and shows no additional vulnerability as assessed by DMS. This preemptive mitigation demonstrates a generalizable approach for optimizing existing antibodies against potential future viral escape.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信