Sajad A. Ansari, Jonathan N. Davidson, Martin P. Foster
{"title":"FEA-Based Optimisation of an Inserted-Shunt Integrated Planar Transformer for a Bidirectional CLLLC Resonant Converter","authors":"Sajad A. Ansari, Jonathan N. Davidson, Martin P. Foster","doi":"10.1049/pel2.70014","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an optimisation method for an inserted-shunt integrated planar transformer based on 3D simulation in Ansys Maxwell. The optimisation objective is enhanced efficiency and power density for the transformer. Thermal analysis verifies the optimisation to ensure the transformer's operability under limited temperature conditions when its size is reduced. The optimised integrated transformer is implemented for verification, with the presentation of experimental results, including AC resistance, efficiency, operating waveforms, and thermal imagery. Furthermore, the paper provides insight into the loss distribution of the transformer. The study shows that the optimisation enhances the power density of the inserted-shunt integrated planar transformer by 270% compared to the conventional design. Additionally, the CLLLC converter incorporating the optimised transformer achieves approximately 1.84 percentage points higher efficiency than the conventional design.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an optimisation method for an inserted-shunt integrated planar transformer based on 3D simulation in Ansys Maxwell. The optimisation objective is enhanced efficiency and power density for the transformer. Thermal analysis verifies the optimisation to ensure the transformer's operability under limited temperature conditions when its size is reduced. The optimised integrated transformer is implemented for verification, with the presentation of experimental results, including AC resistance, efficiency, operating waveforms, and thermal imagery. Furthermore, the paper provides insight into the loss distribution of the transformer. The study shows that the optimisation enhances the power density of the inserted-shunt integrated planar transformer by 270% compared to the conventional design. Additionally, the CLLLC converter incorporating the optimised transformer achieves approximately 1.84 percentage points higher efficiency than the conventional design.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf